Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoinduced Electron-transfer Oxidation

Gan, H., Leinhos, U., Gould, I.R., and Whitten, D.G., Photoinduced electron transfer oxidative fragmentation of aminopinacols. Factors governing reaction rates and quantum efficiencies of C-C bond fragmentation, /. Phys. Chem., 99, 3566,1995. [Pg.110]

Mori, T, Takamoto, M., Wada, T, and Inoue, Y., Photoinduced electron-transfer oxidation of olefins with molecular oxygen sensitized by tetrasubstituted dimethoxybenzenes a non-singlet-oxygen mechanism, Helv. Chim. Acta, 84, 2693, 2001. [Pg.895]

Photoinduced electron transfer in frozen solutions Carotenoid radical cations formed by chemical oxidation with I2... [Pg.162]

Hynninen and coworkers <99JCS(PT1)2403> used a similar approach to prepare phytochlorin-C6o diad 38 (Scheme 11). The protocol employed the pyrolysis of the natural chlorophyll a molecule 35, followed by transesterification and demetallation to furnish derivative 36. Subsequent oxidation of 36 with OsCU and NaI04 has allowed the synthesis of the formyl derivative 37, which was further used as precursor of the azomethinic ylide intermediate in the 1,3-DC reaction with Cm leading to the formation of diad 38. Photochemical studies revealed that this diad underwent a fast intramolecular photoinduced electron transfer in polar solvents such a benzonitrile <99JACS9378>. [Pg.53]

Tetrahydropyrrolo[l,4]oxazine 74, obtained by photoinduced electron-transfer (PET) oxidative activation of substituted prolinol, undergoes nucleophilic substitution of the OH at position C-3 with allyltrimethylsilane in the presence of TiCU (Scheme 8). The reaction was highly stereoselective and produced, after hydrolysis of the resultant amide 75, optically active a-hydroxy acid 76 together with the auxiliary (.S )-prolinol that can be effectively recycled <1998TL7153>. [Pg.507]

With the aim of mimicking, on a basic level, the photoinduced electron-transfer process from WOC to P680+ in the reaction center of PSII, ruthenium polypyridyl complexes were used (182-187) as photosensitizers as shown in Fig. 19. These compounds are particularly suitable since their photophysical and photochemical properties are well known. For example, the reduction potential [Rum(bpy)3]3+/-[Run(bpy)3]2+ (bpy = 2,2 -bipyridine) of 1.26 V vs NHE is sufficiently positive to affect the oxidation of phenols (tyrosine). As traps for the photochemically mobilized electron, viologens or [Co(NH3)5C1]2+ were used. [Pg.180]

Figure 21. Photoinduced electron transfer in the synthetic Ru-phenol-Mn triads. (a) from (185) and (b) from (186,187). In both cases, the Ru(II) is oxidized by photoinduced electron transfer to an extraneous electron acceptor e.g., [Co(NH3)5C1]2+ and the electron is recaptured from the tyrosyl moiety that oxidizes a Mn ion in a bimolecular reaction (left) or intramolecularly as shown on the right-hand side. Figure 21. Photoinduced electron transfer in the synthetic Ru-phenol-Mn triads. (a) from (185) and (b) from (186,187). In both cases, the Ru(II) is oxidized by photoinduced electron transfer to an extraneous electron acceptor e.g., [Co(NH3)5C1]2+ and the electron is recaptured from the tyrosyl moiety that oxidizes a Mn ion in a bimolecular reaction (left) or intramolecularly as shown on the right-hand side.
The amide functionality plays an important role in the physical and chemical properties of proteins and peptides, especially in their ability to be involved in the photoinduced electron transfer process. Polyamides and proteins are known to take part in the biological electron transport mechanism for oxidation-reduction and photosynthesis processes. Therefore studies of the photochemistry of proteins or peptides are very important. Irradiation (at 254 nm) of the simplest dipeptide, glycylglycine, in aqueous solution affords carbon dioxide, ammonia and acetamide in relatively high yields and quantum yield (0.44)202 (equation 147). The reaction mechanism is thought to involve an electron transfer process. The isolation of intermediates such as IV-hydroxymethylacetamide and 7V-glycylglycyl-methyl acetamide confirmed the electron-transfer initiated free radical processes203 (equation 148). [Pg.739]

Some cation-radicals can appear as hydrogen acceptors. Thus, fullerene Cgg is oxidized to the cation-radical at a preparative scale by means of photoinduced electron transfer. As in the case of anion-radical, the fullerene Cgo cation-radical bears the highly delocalized positive charge and shows low electrophilicity. This cation-radical reacts with various donors of atomic hydrogen (alcohols, aldehydes, and ethers) yielding the fullerene 1,2-dihydroderivatives (Siedschlag et al. 2000). [Pg.30]

An useful alternative to the already known retropinacol reactions is presented by Liu and co-workers [7], This works demonstrates that pinacols bearing (dimethylamino)phenyl substiments can be subjected to fast oxidative fragmentation via photoinduced electron transfer with chloroform as the electron acceptor in yields up to 80%. The extremely fast dechlorination of the chloroform radical anion inhibits back-electron transfer and thus leads to effective fragmentation of the pinacol radical cation (Scheme 8). [Pg.190]

Highly efficient and stereoselective addition of tertiary amines to electron-deficient alkenes is used by Pete et al. for the synthesis of necine bases [26,27], The photoinduced electron transfer of tertiary amines like Af-methylpyrrolidine to aromatic ketone sensitizers yield regiospecifically only one of the possible radical species which then adds diastereospecifically to (5I )-5-menthyloxy-2-(5//)-furanone as an electron-poor alkene. For the synthesis of pyrrazolidine alkaloids in approximately 30% overall yield, the group uses a second PET step for the oxidative demethylation of the pyrrolidine. The resulting secondary amine react spontaneously to the lactam by intramolecular aminolysis of the lactone (Scheme 20) [26,27]. [Pg.197]

The Sc -promoted photoinduced electron transfer can be generally applied for formation of the radical cations of a variety of fullerene derivatives, which would otherwise be difficult to oxidize [135]. It has been shown that the electron-transfer oxidation reactivities of the triplet excited states of fullerenes are largely determined by the HOMO (highest occupied molecular orbital) energies of the fullerenes, whereas the triplet energies remain virtually the same among the fullerenes [135]. [Pg.267]

The oxidative behaviour of the acridinium carbocations 61 was also explored by the group of Lacour in the photoinduced electron transfer reaction [160]. In the amount of 2 mol%, the achiral hindered acridinium salt 61 catalyzed the aerobic photooxidation of the primary benzylic amine to benzylimine in the yield of 74% (Scheme 63). [Pg.377]

Under the advisement of PhD mentor Professor Joseph T. Hupp, the PI successfully used spectroelectrochemical quartz crystal microgravimetry to elucidate the mechanism of charge transport... for both aqueous and nonaqueous sytems. This was the first demonstration of proton-coupled electron transfer at oxide semiconductor interfaces. These findings were then successfully applied to a new interpretation of photoinduced electron transfer at similar interfaces, which are of importance in the field of solar energy conversion. ... [Pg.441]

Photoinduced electron transfer (PET Scheme 6.2) is a mild and versatile method to generate radical ion pairs in solution," exploiting the substantially enhanced oxidizing or reducing power of acceptors or donors upon photoexcitation. The excited state can be quenched by electron transfer (Eq. 7) before (aromatic hydrocarbons) or after intersystem crossing to the triplet state (ketones, quinones). The resulting radical ion pairs have limited lifetimes they readily undergo intersystem ... [Pg.210]

A photoinduced electron relay system at solid-liquid interface is constructed also by utilizing polymer pendant Ru(bpy)2 +. The irradiation of a mixture of EDTA and water-insoluble polymer complex (Ru(PSt-bpy)(bpy) +, prepared by Eq. (15)) deposited as solid phase in methanol containing MV2+ induced MV 7 formation in the liquid phase 9). The rate of MV formation was 4 pM min-1. As shown in Fig. 14, photoinduced electron transfer occurs from EDTA in the solid to MV2+ in the liquid via Ru(bpy)2 +. The protons and Pt catalyst in the liquid phase brought about H2 evolution. One hour s irradiation of the system gave 9.32 pi H2 after standing 12 h and the turnover number of the Ru complex was 7.6 under this condition. The apparent rate constant of the electron transfer from Ru(bpy)2+ in the solid phase to MV2 + in the liquid was estimated to be higher than that of the entire solution system. The photochemical reduction and oxidation products, i.e., H2 and EDTAox were thus formed separately in different phases. Photoinduced electron relay did not occur in the system where a film of polymer pendant Ru complex separates two aqueous phases of EDTA and MV2 9) (see Fig. 15c). [Pg.24]


See other pages where Photoinduced Electron-transfer Oxidation is mentioned: [Pg.851]    [Pg.851]    [Pg.1607]    [Pg.297]    [Pg.851]    [Pg.851]    [Pg.851]    [Pg.1607]    [Pg.297]    [Pg.851]    [Pg.583]    [Pg.286]    [Pg.80]    [Pg.115]    [Pg.159]    [Pg.110]    [Pg.35]    [Pg.441]    [Pg.79]    [Pg.5]    [Pg.158]    [Pg.380]    [Pg.237]    [Pg.247]    [Pg.251]    [Pg.260]    [Pg.263]    [Pg.468]    [Pg.621]    [Pg.660]    [Pg.663]    [Pg.261]    [Pg.368]    [Pg.340]    [Pg.143]    [Pg.143]    [Pg.820]   


SEARCH



Electron Oxidants

Electron photoinduced

Electron transfer, oxides

Electronic oxides

Electrons oxidation

Oxidation transfer

Oxidative electron transfer

Photoinduced electron transfer

© 2024 chempedia.info