Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoelectron Analyzer

Energy Spectrometry (EDS) uses the photoelectric absorption of the X ray in a semiconductor crystal (silicon or germanium), with proportional conversion of the X-ray energy into charge through inelastic scattering of the photoelectron. The quantity of charge is measured by a sophisticated electronic circuit linked with a computer-based multichannel analyzer to collect the data. The EDS instrument is... [Pg.179]

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]

The surface to be analyzed is irradiated with soft X-ray photons. When a photon of energy hv interacts with an electron in a level X with the binding energy Eg (Eg is the energy E of the K-shell in Pig. 2.1), the entire photon energy is transferred to the electron, with the result that a photoelectron is ejected with the kinetic energy... [Pg.6]

In XPS the photoelectrons are retarded to a constant energy, called the pass energy, as they approach the entrance slit. If this were not done, Eq. (2.5) shows that to achieve an absolute resolution of 1 eV at the maximum kinetic energy of approximately 1500 eV (using A1 Ka radiation), and with a slit width of 2 mm, would require an analyzer with an average radius of about 300 cm, which is impracticable. Pass energies are selected in the range 20-100 eV for XPS, which enables the analyzer to be built with a radius of 10-15 cm. [Pg.14]

The photoelectron spectrum of gaseous 82 has been measured and analyzed it provided the value of the ionization energy of this ion as 1.67 eV [135]. [Pg.147]

TEM observation and elemental analysis of the catalysts were performed by means of a transmission electron microscope (JEOL, JEM-201 OF) with energy dispersion spectrometer (EDS). The surface property of catalysts was analyzed by an X-ray photoelectron spectrometer (JEOL, JPS-90SX) using an A1 Ka radiation (1486.6 eV, 120 W). Carbon Is peak at binding energy of 284.6 eV due to adventitious carbon was used as an internal reference. Temperature programmed oxidation (TPO) with 5 vol.% 02/He was also performed on the catalyst after reaction, and the consumption of O2 was detected by thermal conductivity detector. The temperature was ramped at 10 K min to 1273 K. [Pg.518]

The catalyst prepared above was characterized by X-ray diffraction, X-ray photoelectron and Mdssbauer spectroscopic studies. The catalytic activities were evaluated under atmospheric pressure using a conventional gas-flow system with a fixed-bed quartz reactor. The details of the reaction procedure were described elsewhere [13]. The reaction products were analyzed by an on-line gas chromatography. The mass balances for oxygen and carbon beb een the reactants and the products were checked and both were better than 95%. [Pg.398]

Vol. 66 Solid Phase Biochemistry Analytical and Synthetic Aspects. Edited by William H. Scouten Vol. 67 An Introduction to Photoelectron Spectroscopy. By Pradip K. Ghosh Vol. 68 Room Temperature Phosphorimetry for Chemical Analysis. By Tuan Vo-Dinh Vol. 69 Potentiometry and Potentiometric Titrations. By E. P. Serjeant Vol. 70 Design and Application of Process Analyzer Systems. By Paul E. Mix Vol. 71 Analysis of Organic and Biological Surfaces. Edited by Patrick Echlin Vol. 72 Small Bore Liquid Chromatography Columns Their Properties and Uses. Edited by Raymond P.W. Scott... [Pg.652]


See other pages where Photoelectron Analyzer is mentioned: [Pg.120]    [Pg.166]    [Pg.166]    [Pg.347]    [Pg.224]    [Pg.584]    [Pg.120]    [Pg.166]    [Pg.166]    [Pg.347]    [Pg.224]    [Pg.584]    [Pg.308]    [Pg.356]    [Pg.299]    [Pg.451]    [Pg.19]    [Pg.195]    [Pg.242]    [Pg.243]    [Pg.249]    [Pg.294]    [Pg.300]    [Pg.320]    [Pg.418]    [Pg.32]    [Pg.161]    [Pg.213]    [Pg.519]    [Pg.366]    [Pg.391]    [Pg.55]    [Pg.365]    [Pg.461]    [Pg.308]    [Pg.139]    [Pg.125]    [Pg.554]    [Pg.77]    [Pg.391]    [Pg.63]    [Pg.118]    [Pg.78]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



© 2024 chempedia.info