Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphorus nitrile

As another inorganic analogue of benzene reference may be made to the constitution of the polymeric phosphorus nitrile chlorides, in which the PN bonds in the ring also appear to be... [Pg.235]

Phosphorus nitrile chloride forms adduct (10) with DMF in the ratio 1 4, which is useful for the preparation of formamidines and azavinylogous formamidinium salts. It is supposed that the dehydration of primary amides to nitriles with (PNChls as well as the formation of 2-alkylbenzothiazoles from 2-(methylthio)anilides and (PNChls in the presence of triethylamine proceed via similar adducts." ... [Pg.490]

PIRG pubhc-interest research group PNF phosphorus nitrile... [Pg.608]

EMmethyl polysiloxane + predpitated silica + phosphorus nitrile chloride + polyethylene glycol stearate... [Pg.296]

Poly(phosphorus nitrile chloride) Bzn, carbon tetrachloride, chloroform, Aliphatic hydrocarbons 611... [Pg.2008]

The crude acetonitrile contains as impurity chiefly acetic acid, arising from the action of phosphoric acid on the acetamide. Therefore add to the nitrile about half its volume of water, and then add powdered dry potassium carbonate until the well-shaken mixture is saturated. The potassium carbonate neutralises any acetic acid present, and at the same time salts out the otherwise water-soluble nitrile as a separate upper layer. Allow to stand for 20 minutes with further occasional shaking. Now decant the mixed liquids into a separating-funnel, run off the lower carbonate layer as completely as possible, and then pour off the acetonitrile into a 25 ml, distilling-flask into which about 3-4 g. of phosphorus pentoxide have been placed immediately before. Fit a thermometer and water-condenser to the flask and distil the acetonitrile slowly, collecting the fraction of b.p. 79-82°. Yield 9 5 g. (12 ml.). [Pg.122]

Place 45 g. of benzamide (Section IV, 188) and 80 g. of phosphorus pentoxide in a 250 ml. Claisen flask (for exact experimeutal details on the handling and weighing out of phosphoric oxide, see under Acetamide, Section 111,111). Mix well. Arrange for distillation (Fig.//, 29, 1 or Fig. II, 20, 1) under reduced pressure use a water pump with an air leak in the system so that a pressure of about 100 mm. is attained. Heat the flask with a free flame until no more liquid distils the nitrile will pass over at 126-130°/100 mm. Wash the distillate with a little sodium carbonate solution, then with water, and dry over anhydrous calcium chloride or magnesium sulphate. Distil under normal pressure (Fig. II, 13, 2 or II, 13, 6) from a 50 ml. flask the benzonitrile passes over as a colourless liquid at 188-189° (compare Section IV,66). The yield is 28 g. [Pg.803]

The reaction of phosphorus pentasulfide with a-acylamino carbonyl compounds of type Ilia also yields thiazoles. Even more commonly, a mercaptoketone is condensed with a nitrile of type IVa or a-mercaptoacids or their esters with Schiff bases. This ring closure is limited to the thiazolidines. In the Va ring-closure type, /3-mercaptoalkylamines serve as the principal starting materials, and ethylformate is the reactant that supplies the carbon at the 2-position of the ring. These syntheses constitute the most important route for the preparation of many thiazolidines and 2-thiazohnes. In the Vb t3fpe of synthesis, one of the reactant supplies only the carbon at the 5-position of the resultant thiazole. Then in these latter years new modern synthetic methods of thiazole ring have been developed (see Section 7 also Refs. 515, 758, 807, 812, 822). [Pg.168]

Aromatic thioamides can be prepared as described in the literature by different ways, either by S -> O exchange between the corresponding benzamides and phosphorus pentasulfide in pyridine solution in the presence of triethylamine (65, 646) as strong base, or by action of H2S on the appropriate nitrile with pyridine and triethylamine solvents using the method of Fairfull et al. (34, 374, 503). In this reaction, thioacetamide in acidic medium can also be used as a H2S generator with dimethylform-amide as the solvent (485). [Pg.171]

Thiazole carboxamides are readily dehydrated to nitriles in good yields by heating with phosphorus oxychloride (91), phosphorus pentoxide (87, 71), or phosphoryl chloride (16) (Scheme 19). [Pg.530]

Pyridazinecarboxamides are prepared from the corresponding esters or acid chlorides with ammonia or amines or by partial hydrolysis of cyanopyridazines. Pyridazinecarboxamides with a variety of substituents are easily dehydrated to nitriles with phosphorus oxychloride and are converted into the corresponding acids by acid or alkaline hydrolysis. They undergo Hofmann degradation to give the corresponding amines, while in the case of two ortho carboxamide groups pyrimidopyridazines are formed. [Pg.33]

Carboxylic acid derivatives on pyridopyrimidine rings appear to undergo normal reactions with electrophilic reagents, e.g. the 6-amide (70) is dehydrated to the 6-nitrile with phosphorus oxychloride. [Pg.210]

The method described is a modification of the procedure used by Ghosez to synthesize cinnamonitrile. 3-(2-Furyl)acrylo-nitrile has been prepared by catalytic condensation of furfural with acetonitrile in the vapor phase at 320°, by dehydration of the corresponding amide over phosphorus pentachloride, and by decarboxylation of 3-(2-furyl)-2-cyanoacrylic acid. ... [Pg.47]

Enolates of aldehydes, ketones, and esters and the carbanions of nitriles and nitro compounds, as well as phosphorus- and sulfur-stabilized carbanions and ylides, undergo the reaction. The synthetic applications of this group of reactions will be discussed in detail in Chapter 2 of Part B. In this section, we will discuss the fundamental mechanistic aspects of the reaction of ketone enolates with aldehydes md ketones. [Pg.466]

Constitution. Pelletierine behaves as a secondary amine and the oxygen atom of the alkaloid is present in the form of an aldehyde group, since the base yields an oxime, convertible by the action of phosphorus pentachloride into a nitrile, b.p. 104-6°/13 mm., which is hydrolysed by caustic potash in alcohol to an acid, the ethyl ester of which is Loffler and Kaim s ethyl -2-piperidylpropionate. Pelletierine is not directly oxidisable to this acid. It also yields a liquid hydrazone, b.p. 130°/20 ram., which with sodium in alcohol at 136-70° reduces to dZ-eoniine. These reactions are explained by the following formulas, in which pelletierine is represented as -2-piperidylpropionaldehyde. [Pg.56]

The requisite starting cyanohydrin is readily prepared from a 20-keto-pregnane substitution at C-21 has no effect on the success of this step. However, the stability of the cyanohydrin is markedly dependent on other features of the molecule thus a 3-acetate confers greater stability than the free alcohol, and a 3-ketone is so unstable that subsequent dehydration with phosphorus oxychloride gives poor yields of the A -unsaturated nitrile. [Pg.218]

Benzonitrile with [(i -Cp )P W(CO)5 2] gives 82, the result of migration of the phosphorus atom, insertion of the nitrile moiety into the P-C bond and further C-H bond activation (01AGE3413). [Pg.27]

The difficulties encountered in the synthesis of 2-alkyl- and 2-aryl-substituted selenazoles lie principally in the preparation of the corresponding selenoamides. In this respect, a method is worthy of note in which the use of selenoamides is dispensed with. For this, a nitrile, a hydrogen selenide, and an a-halogenoketone are reacted together in the presence of a condensation catalyst. Phosphorus oxychloride, alone or mixed with zinc chloride or phosphorus trichloride, is specially suitable. The yields of the corresponding 2-alkylseIenazoles are up to a maximum of 25%,... [Pg.345]

A thioamide of isonicotinic acid has also shown tuberculostatic activity in the clinic. The additional substitution on the pyridine ring precludes its preparation from simple starting materials. Reaction of ethyl methyl ketone with ethyl oxalate leads to the ester-diketone, 12 (shown as its enol). Condensation of this with cyanoacetamide gives the substituted pyridone, 13, which contains both the ethyl and carboxyl groups in the desired position. The nitrile group is then excised by means of decarboxylative hydrolysis. Treatment of the pyridone (14) with phosphorus oxychloride converts that compound (after exposure to ethanol to take the acid chloride to the ester) to the chloro-pyridine, 15. The halogen is then removed by catalytic reduction (16). The ester at the 4 position is converted to the desired functionality by successive conversion to the amide (17), dehydration to the nitrile (18), and finally addition of hydrogen sulfide. There is thus obtained ethionamide (19)... [Pg.255]

Because of resonance stabilization of the anion, a tet-nazolyl moiety is often employed successfully as a bioisosteric replacement for a carboxy group. An example in this subclass is provided by azosemide (27). Benzonitrile analogue is prepared by phosphorus oxychloride dehydration of the corresponding benzamide. Next, a nucleophilic aromatic displacement reaction of the fluorine atom leads to The synthesis concludes with the 1,3-dipolar addition of azide to the nitrile liinction to produce the diuretic azosemi de (27). ... [Pg.59]

Ethyl-lsonicotinic Nitrile The 11 grams of the amide just obtained are treated with 15 grams of phosphorus anhydride at 160° to 180°C in a vacuum. 6 grams of a liquid residue are obtained. [Pg.591]


See other pages where Phosphorus nitrile is mentioned: [Pg.1279]    [Pg.2257]    [Pg.1279]    [Pg.2257]    [Pg.143]    [Pg.487]    [Pg.82]    [Pg.128]    [Pg.157]    [Pg.733]    [Pg.27]    [Pg.121]    [Pg.967]    [Pg.112]    [Pg.147]    [Pg.80]    [Pg.86]    [Pg.262]    [Pg.296]    [Pg.402]    [Pg.73]    [Pg.163]    [Pg.77]   
See also in sourсe #XX -- [ Pg.235 ]

See also in sourсe #XX -- [ Pg.608 ]




SEARCH



Phosphorus Chloride nitriles from amides

Phosphorus nitrile chloride

Phosphorus nitrile chloride adducts

Phosphorus nitrile chloride dimethylformamide

© 2024 chempedia.info