Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphoric acid fuel cells electrodes

In Section 3, the slow rate of the ORR at the Pt/ionomer interface was described as a central performance limitation in PEFCs. The most effective solution to this limitation is to employ dispersed platinum catalysts and to maximize catalyst utilization by an effective design of the cathode catalyst layer and by the effective mode of incorporation of the catalyst layer between the polymeric membrane electrolyte and the gas distributor/current collector. The combination of catalyst layer and polymeric membrane has been referred to as the membrane/electrode (M E) assembly. However, in several recent modes of preparation of the catalyst layer in PEFCs, the catalyst layer is deposited onto the carbon cloth, or paper, in much the same way as in phosphoric acid fuel cell electrodes, and this catalyzed carbon paper is hot-pressed, in turn, to the polymeric membrane. Thus, two modes of application of the catalyst layer - to the polymeric membrane or to a carbon support - can be distinguished and the specific mode of preparation of the catalyst layer could further vary within these two general application approaches, as summarized in Table 4. [Pg.229]

Phosphoric Acid Fuel Cell This type of fuel cell was developed in response to the industiy s desire to expand the natural-gas market. The electrolyte is 93 to 98 percent phosphoric acid contained in a matrix of silicon carbide. The electrodes consist of finely divided platinum or platinum alloys supported on carbon black and bonded with PTFE latex. The latter provides enough hydrophobicity to the electrodes to prevent flooding of the structure by the electrolyte. The carbon support of the air elec trode is specially formulated for oxidation resistance at 473 K (392°F) in air and positive potentials. [Pg.2412]

In a simple version of a fuel cell, a fuel such as hydrogen gas is passed over a platinum electrode, oxygen is passed over the other, similar electrode, and the electrolyte is aqueous potassium hydroxide. A porous membrane separates the two electrode compartments. Many varieties of fuel cells are possible, and in some the electrolyte is a solid polymer membrane or a ceramic (see Section 14.22). Three of the most promising fuel cells are the alkali fuel cell, the phosphoric acid fuel cell, and the methanol fuel cell. [Pg.639]

In the phosphoric acid fuel cell as currently practiced, a premium (hydrogen rich) hydrocarbon (e.g. methane) fuel is steam reformed to produce a hydrogen feedstock to the cell stack for direct (electrochemical) conversion to electrical energy. At the fuel electrode, hydrogen ionization is accomplished by use of a catalytic material (e.g. Pt, Pd, or Ru) to form solvated protons. [Pg.575]

In applications where Nafion is not suitable, at temperatures above 200 °C with feed gas heavily contaminated with CO and sulfur species, a phosphoric acid fuel cell (PAFC)-based concentrator has been effective [15]. Treating the gas shown in Table 1, a H2 product containing 0.2% CO, 0.5%CO2 and only 6 ppm H2S was produced. The anode electrode was formed from a catalyst consisting basically of Pt-alloy mixed with 50% PTFE on a support of Vulcan XC-72 carbon. The cathode was... [Pg.209]

The beginning of modeling of polymer-electrolyte fuel cells can actually be traced back to phosphoric-acid fuel cells. These systems are very similar in terms of their porous-electrode nature, with only the electrolyte being different, namely, a liquid. Giner and Hunter and Cutlip and co-workers proposed the first such models. These models account for diffusion and reaction in the gas-diffusion electrodes. These processes were also examined later with porous-electrode theory. While the phosphoric-acid fuel-cell models became more refined, polymer-electrolyte-membrane fuel cells began getting much more attention, especially experimentally. [Pg.442]

The earliest models of fuel-cell catalyst layers are microscopic, single-pore models, because these models are amenable to analytic solutions. The original models were done for phosphoric-acid fuel cells. In these systems, the catalyst layer contains Teflon-coated pores for gas diffusion, with the rest of the electrode being flooded with the liquid electrolyte. The single-pore models, like all microscopic models, require a somewhat detailed microstructure of the layers. Hence, effective values for such parameters as diffusivity and conductivity are not used, since they involve averaging over the microstructure. [Pg.464]

Phosphoric acid fuel cells (PAFC) use liquid phosphoric acid as an electrolyte - the acid is contained in a Teflon-bonded silicon carbide matrix - and porous carbon electrodes containing a platinum catalyst. The PAFC is considered the "first generation" of modern fuel cells. It is one of the most mature cell types, the first to be used commercially, and features the most proven track record in terms of commercial applications with over 200 units currently in use. This type of fuel cell is typically used for stationary power generation, but some PAFCs have been used to power large vehicles such as city buses. [Pg.25]

Phosphoric acid fuel cells rely on expensive components and, like pems, use platinum catalysts to accelerate the chemical reactions at the electrodes. Finally, they have not achieved the level of sales needed to significantly reduce manufacturing costs. For these reasons, UTC Fuel Cells is phasing out production of phosphoric acid fuel cells in favor of pem fuel cell technology, which is likely to be significantly less expensive. [Pg.40]

Phosphoric-acid fuel cell (PAFC) — In PAFCs the -> electrolyte consists of concentrated phosphoric acid (85-100%) retained in a silicon carbide matrix while the -> porous electrodes contain a mixture of Pt electrocatalyst (or its alloys) (-> electrocatalysis) supported on -> carbon black and a polymeric binder forming an integral structure. A porous carbon paper substrate serves as a structural support for the electrocatalyst layer and as the current collector. The operating temperature is maintained between 150 to 220 °C. At lower temperatures, phosphoric acid tends to be a poor ionic conductor and poisoning of the electrocatalyst at the anode by CO becomes severe. [Pg.494]

In chapter 4, Stonehart (a major authority in the field of H2 fuelcell technology and its fundamental aspects) writes, with co-author Wheeler, on the topic of Phosphoric Acid Fuel-Cells (PAFCs) for Utilities Electrocatalyst Crystallite Design, Carbon Support, and Matrix Materials Challenges. This contribution reviews, in detail, recent information on the behavior of very small Pt and other alloy electrocatalyst crystallites used as the electrode materials for phosphoric acid electrolyte fuel-cells. [Pg.553]

An electrolyte is an essential component within fuel cells, used to facilitate the selective migration of ions between the electrodes. Fuel cells are typically classified according to the electrolytes used alkaline fuel cell (AFC), polymer electrolyte (or proton exchange membrane) fuel cell (PEMFC), phosphoric acid fuel cell (PAFC),... [Pg.80]

The electrolyte in the phosphoric acid fuel cells (PAFCs), which operate at 200 °C, is phosphoric acid and the electrodes are carbon black or graphite plates in which Pt particles are dispersed. The PAFCs are generally fed by natural gas, and CO has to be removed (only a 1 % concentration is accepted) to avoid Pt poisoning. PAFCs are mainly used for combined heat and power generation (up to 200 kW) in... [Pg.3844]

Phosphoric acid fuel cell (PAFC) was the first fuel cell to be commercialized. PAFC uses liquid phosphoric acid as an electrolyte, which is soaked in silicon carbide particle matrix using capillary action. PAFC is tolerant to CO2 feed stream because the electrolyte is an acid. However, carbon monoxide poisons the Pt electrodes so that its concentration should be below 3-5 volume % in the feed stocks. [Pg.2503]

Based on the above properties, glass-like carbon has found applications as heating elements, as containers for chemical reactions and as containers for molten metals. They are also used as separators and electrodes in phosphoric acid fuel cells (Ovshinsky, 2000). [Pg.556]

In the phosphoric acid fuel cell (PAFC), the acid may react vigorously with the metals and consequently the main problem in the development of this type of cell is the choice of acid-resistant materials. The electrodes are made of platinum mounted on a carbon carrier. The working temperature is about 200°C. [Pg.146]


See other pages where Phosphoric acid fuel cells electrodes is mentioned: [Pg.577]    [Pg.173]    [Pg.160]    [Pg.18]    [Pg.22]    [Pg.464]    [Pg.23]    [Pg.173]    [Pg.88]    [Pg.285]    [Pg.527]    [Pg.373]    [Pg.544]    [Pg.563]    [Pg.170]    [Pg.231]    [Pg.522]    [Pg.9]    [Pg.1787]    [Pg.2501]    [Pg.709]    [Pg.240]    [Pg.472]    [Pg.41]    [Pg.266]    [Pg.267]   
See also in sourсe #XX -- [ Pg.413 ]




SEARCH



Acidic fuel cell

Electrode Fuel Cell

Electrode cells

Fuel cells phosphoric acid

Fuel electrode

Fuel phosphoric acid

Phosphoric acid cells

Phosphoric acid fuel cells electrode/electrolyte system

© 2024 chempedia.info