Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphonium cyclic

Anionic Polymerization of Cyclic Siloxanes. The anionic polymerization of cyclosiloxanes can be performed in the presence of a wide variety of strong bases such as hydroxides, alcoholates, or silanolates of alkaH metals (59,68). Commercially, the most important catalyst is potassium silanolate. The activity of the alkaH metal hydroxides increases in the foUowing sequence LiOH < NaOH < KOH < CsOH, which is also the order in which the degree of ionization of thein hydroxides increases (90). Another important class of catalysts is tetraalkyl ammonium, phosphonium hydroxides, and silanolates (91—93). These catalysts undergo thermal degradation when the polymer is heated above the temperature requited (typically >150°C) to decompose the catalyst, giving volatile products and the neutral, thermally stable polymer. [Pg.46]

Quite a number of cyclic phosphonium salts have been prepared over the years. We have not generally included compounds here which contain fewer than three potential binding sites in a ring unless they are mentioned as by-products in another reaction. Horner, Kunz and Walach have utilized the well-known alkylation approach to prepare cyclic phosphonium salts containing four phosphorus atoms. The formation of the cyclic tetraphosphonium salts is shown below in Eq. (6.14). [Pg.273]

The phosphonium salt method works best with nucleophilic olefins [//, 12, 16, 17, 18, 19] (Table 1 and equations 1-3) and has been used m mechanistically important studies of difluorocarbene additions to norbornadienes [20 21, 22, 23] that provided the first example of a concerted homo-l,4-addition (equation 4) A recent modification uses catalytic 1,4,7,10,13,16 hexaoxacyclooctadecane (18-crown-6) to shorten reaction times and increase yields with less nucleophilic olefins [12] (Table 1) Neither procedure, however, compares with the use of phenyl(tri-f1uoromethyl)mercury or (trifluoromethyl)trimethyltin reagents [efficient reactions with less nucleophilic olefins (equations 3 and 5) and cyclic dienes [24, 25] (equations 6 and 7)... [Pg.767]

Direct alkylation of allylic alcohols via the (allyloxy)phosphonium ion intermediate normally proceeds with anti-y selectivity for the Cyclic system, and sy/i-y selectivity for the acyclic system (see Table l)35 36. [Pg.876]

Further, Wasserman and coworkers developed a direct acylation of stabilized phosphonium ylides by carboxylic acids in presence of the EDCI/DMAP (way c). This last method allows the introduction of a-aminoacid structures into the resulting P-oxo phosphorus ylides [19-25],opening the way to the total synthesis of depsipeptide elastase inhibitors [22,24] or cyclic peptidic protease inhibitor EurystatinA [20]. [Pg.44]

The thermolysis of various substituted phosphonium ylides between 600 °C and 900 °C can afford either substituted alkynes [16,25,27] or cyclic dienes [20] by extrusion of PhjPO, or new stabilized ylides by cyclization of the functional groups [27,28]. [Pg.45]

However an unexpected new cyclic ruthenium phosphorus ylide half-sandwich complex 42 has been obtained by reaction of 41 with dichloromethane as solvent [79]. The cyclisation involves a C-Cl activation and corresponds to the incorporation of the methylene moiety in the P-C bond and to the ortho-metal-lation of one phenyl of the phosphine. An other novel unusual phosphonium ylide ruthenium complex 43 has also recently been described [80]. [Pg.55]

Very few examples of bridging non-cyclic methanides of gold are known. Among them the complex 79 has been reported as the result of the reaction of phosphine-phosphonium derivatives with acetylacetonate derivatives of gold(I) [103,104]. The complexes 80 [89,98], already seen in previous paragraphs, cor-... [Pg.61]

The rates of hydrolysis of a variety of cyclic and acyclic phosphonium salts do not correlate with their P chemical shifts. ... [Pg.24]

Aldol addition and related reactions of enolates and enolate equivalents are the subject of the first part of Chapter 2. These reactions provide powerful methods for controlling the stereochemistry in reactions that form hydroxyl- and methyl-substituted structures, such as those found in many antibiotics. We will see how the choice of the nucleophile, the other reagents (such as Lewis acids), and adjustment of reaction conditions can be used to control stereochemistry. We discuss the role of open, cyclic, and chelated transition structures in determining stereochemistry, and will also see how chiral auxiliaries and chiral catalysts can control the enantiose-lectivity of these reactions. Intramolecular aldol reactions, including the Robinson annulation are discussed. Other reactions included in Chapter 2 include Mannich, carbon acylation, and olefination reactions. The reactivity of other carbon nucleophiles including phosphonium ylides, phosphonate carbanions, sulfone anions, sulfonium ylides, and sulfoxonium ylides are also considered. [Pg.1334]

The following example completes the section of threefold anionic domino processes initiated by a SN-type reaction. As discussed earlier in Section 2.2, the reaction of a five-membered cyclic phosphonium ylide with enones, a, 3-unsaturated esters, and a, 3-unsaturated thioesters provides cycloheptene or hydroazulene derivatives in a domino Michael/intramolecular Wittig reaction. This sequence... [Pg.123]

The cyclic phosphonium salts 140,141,143,145, and 146 so obtained are evidence for the mechanism of the oxaphospholic cyclization and especially for the main role of the tertiary carbocation formation during the process. The additional data which support this assumption, come from the investigation of the same reaction, but with different substrate, i.e., dimethyl(l,2-hexadienyl)phosphine oxide 147. In this case, the reaction mechanism involved formation of secondary carbocation that gives oxaphosphole product 148 only in 10% yield (Scheme 60) [124],... [Pg.48]

On reacting the same substrates with phenylsulphenyl- and with phenylselenenyl bromides, relatively stable cyclic phosphonium salts 74 were obtained (Scheme 29) [82],... [Pg.220]

These reactions may be considered to be a method of obtaining 1,3,2,5-dioxaborataphosphoniarinanes with different substituents at carbon and phosphorus atoms of the ring. Comparing the properties of cyclic oxyalkyl-phosphines and boryloxyalkylphosphines, it should be noted that in both cases the reaction with alkyl halides results in the formation of a tertiary phosphonium salt. The reaction with electrophilic reagents such as diphe-nylchlorophosphine and diphenylchloroborane proceeded quite differently [Eq. (100)]. [Pg.105]

All studied model compounds can distinctly be divided into three groups (Table VII). The first group is composed of substances in which the sulfur, selenium or cyclopentadienyl anion acts as an anionic center. They exist only in open betaine forms, and their PES do not contain local minima corresponding to cyclic isomers. The second group contains compounds with arsonium cationic and oxide anionic centers and silicon and germanium betaines with arsonium and amide centers. They exist as cyclic isomers and their PES have no local minima corresponding to the open forms. Finally, the third group consists of six studied compounds with phosphonium cationic and oxide or amide anionic centers and arsonium-imide betaine. Their PES have minima for both cyclic and open forms separated by low barriers. [Pg.73]

Phosphoniosilylotion. This combination reacts with acyclic or cyclic enones to give phosphonium salts, formed by addition of P(C6H,)3 to the p-position of the enone and silylation of the carbonyl group. The products can be converted into p-substituted enones by deprotonation (BuLi), a Wittig reaction, and hydrolysis. [Pg.60]

Preparation.—The hydroxyalkylphosphines (106) (obtained by the cleavage of THF or tetrahydropyran with lithium diorganophosphides) are converted in good yield into the cyclic phosphonium salts (107), (108) on treatment with hydrogen bromide followed by a weak base.108... [Pg.18]

An interesting comparison has been made between the behaviour of (78)—(80) in their reaction with Cl2 and SOaCla.61 Compounds (78) and (79) react at -70 °C via phosphonium-like intermediates, with retention of configuration in the former case the product is the phosphonic chloride (81) whereas (79) yields the cyclic oxophos-phoranesulphenyl chloride (82). On the other hand, the benzodioxaphospholan (80)... [Pg.115]

It can be seen from these data that permanganate can easily be transfered from an aqueous phase into methylene chloride solutions. Quaternary phosphonium ions and polyethers (both cyclic and linear) also exhibit large Ke values (30,32). [Pg.83]

Thorpe reaction org chem The reaction by which, in presence of lithium amides, a,(rt-dinitriles undergo base-catalyzed condensation to cyclic iminonitriles, which can be hydrolyzed and decarboxylated to cyclic ketones. thorp re,ak-shan TMPC See tetrakis(hydroxymethyl)phosphonium chloride, thulia See thulium oxide. thu-le-a ... [Pg.379]

The formation of the heterocycle 1 from the xylylene-bis-phosphonium salt 2 and PCI3 proceeds via a detectable intermediate 3 in a cascade of condensation reactions that is terminated by spontaneous heterolysis of the last remaining P-Cl bond in a cyclic bis-ylide-substituted chlorophosphine formed (Scheme 1) [15]. The reaction scheme is applicable to an arsenic analogue of 1 [15] and to bis-phosphonio-benzophospholides with different triaryl-, aryl-alkyl- and aryl-vinyl-phosphonio groups [16, 18, 19], but failed for trialkylphosphonio-substituted cations here, insufficient acidity prohibited obviously quantitative deprotonation of the phosphonium salts, and only mixtures of products with unreacted starting materials were obtained [19]. The cations were isolated as chloride or bromide salts, but conversion of the anions by complexation with Lewis-acids or metathesis was easily feasible [16, 18, 19] and even salts with organometallic anions ([Co(CO)4] , [CpM(CO)3] (M=Mo, W) were accessible [20]. [Pg.179]

An interesting synthetic approach to thietanes is the selective desulfurization of cyclic disulfides.The treatment of dithiolanes with a diethyl-aminophosphine results in a ring contraction to thietanes, (Eq. 19). This has been demonstrated with a-lipoic acid, a coenzyme with a dithiolane structure involved in the biological oxidation of pyruvic acid. The reaction is proposed to be initiated by the electrophilic attack of the phosphorus on the ring sulfur atom, resulting in the formation of an acyclic internal phosphonium salt, which by subsequent elimination of a phosphine sulfide, closes to the four-membered ring. °... [Pg.230]

Heterocyclic phosphorus ylides are a rather diverse and little known class of compounds. A variety of such structures are now known and in some cases these are of considerable synthetic value. In this chapter we have attempted to review all heterocyclic compounds containing one or more exocyclic phosphorus ylide functions, i.e. of general structure 1. It should be noted that in many cases these exist predominantly in the phosphonium ylide (P+—C ) form but for simplicity they are represented in the ylene form 1. Cyclic ylides 2 and 3 in which the phosphorus atom is within the ring are not included. [Pg.22]

The physical and chemical properties of the X -phosphorins 118 and 120 are comparable to those of phosphonium ylids which are resonance-stabilized by such electron-pulling groups as carbonyl or nitrile substituents Thus they can be viewed as cyclic resonance-stabilized phosphonium ylids 118 b, c, d). As expected, they do not react with carbonyl compounds giving the Wittig olefin products. However, they do react with dilute aqueous acids to form the protonated salts. Similarly, they are attacked at the C-2 or C-4 positions by alkyl-, acyl- or diazo-nium-ions Heating with water results in hydrolytic P—C cleavage, phosphine oxide and the hydrocarbon being formed. [Pg.70]

Derivatives of the general formula (7) in Table 6 have been successfully used as probases and their properties in this context are being further explored. In common with the azobenzenes and ethenetetracarboxylate esters, the fluoren-9-ylidene derivatives usually display two reversible one-electron peaks in cyclic voltammetric experiments. Although disproportionation is possible (cf. Scheme 12) it is the dianions which are the effective bases. It was shown early on that the radical-anions of such derivatives are long-lived in relatively acidic conditions (e.g. in DMF solution the first reduction peak of Ph C -.QCN) remains reversible in the presence of a 570-fold molar excess of acetic acid, at 0.1 V s ). Even the dianions are relatively weak bases, useful mainly for ylid formation from phosphonium and sulphonium salts (pKj s 11-15) they are not sufficiently basic to effect the Wittig-Homer reaction which involves deprotonation of phosphonate esters... [Pg.149]

Most of the pKa values for the phosphonium salts have been determined by potentio-metric measurements in the case of / -ketophosphonium salts562 (Table 13). The acidity of these phosphonium salts depends not only on the R and R groups of the carbonyl chain, but also on the other substituents linked to the phosphorus562 564. Particularly for the cyclic phosphonium salts, the pKa value can vary significantly depending on the different steric and electronic (even transannular) effects on the phosphorus atom564 ... [Pg.109]


See other pages where Phosphonium cyclic is mentioned: [Pg.17]    [Pg.12]    [Pg.250]    [Pg.139]    [Pg.140]    [Pg.155]    [Pg.275]    [Pg.278]    [Pg.661]    [Pg.262]    [Pg.267]    [Pg.82]    [Pg.141]    [Pg.177]    [Pg.489]    [Pg.492]    [Pg.493]    [Pg.70]    [Pg.79]    [Pg.92]    [Pg.116]   


SEARCH



Cyclic phosphonium salts

Cyclic phosphonium salts alkaline hydrolysis

Cyclic phosphonium salts synthesis

© 2024 chempedia.info