Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphate anion characteristics

Axially chiral phosphoric acid 3 was chosen as a potential catalyst due to its unique characteristics (Fig. 2). (1) The phosphorus atom and its optically active ligand form a seven-membered ring which prevents free rotation around the P-0 bond and therefore fixes the conformation of Brpnsted acid 3. This structural feature cannot be found in analogous carboxylic or sulfonic acids. (2) Phosphate 3 with the appropriate acid ity should activate potential substrates via protonation and hence increase their electrophilicity. Subsequent attack of a nucleophile and related processes could result in the formation of enantioenriched products via steren-chemical communication between the cationic protonated substrate and the chiral phosphate anion. (3) Since the phosphoryl oxygen atom of Brpnsted acid 3 provides an additional Lewis basic site, chiral BINOL phosphate 3 might act as bifunctional catalyst. [Pg.399]

Studies conducted by Kelleher and co-woikers in 2006 characterised an efficient gas-phase tandem MS elhnination reaction to identify phosphopantetheine-bound substrates on ACPs [15]. During collisional activation of holo-ACP domains, it was found that the phosphopantetheinyl moeity is ejected from the ACP, yielding a characteristic protonated imine ion at m/z 261. The mechanism of this elimination is believed to leave a phosphate anion attached to the serine of the ACP (apo-ACP + 80 Da) nunus one charge, as the carbonyl of the amide displaces the pantetheinyl unit, generating a five-membered tetrahydrofuranol ring with a protonated inune (Fig. 5.1). [Pg.108]

The effect of concentration of cationic (cetylpyridinium chloride, CPC), anionic (sodium dodecylsulfate, SDS) and nonionic (Twin-80) surfactants as well as effect of pH value on the characteristics of TLC separ ation has been investigated. The best separ ation of three components has been achieved with 210 M CPC and LIO M Twin-80 solutions, at pH 7 (phosphate buffer). Individual solution of SDS didn t provide effective separation of caffeine, theophylline, theobromine, the rate of separ ation was low. The separ ation factor and rate of separ ation was increase by adding of modifiers - alcohol 1- propanol (6 % vol.) or 1-butanol (0.1 % vol.) in SDS solution. The optimal concentration of SDS is 210 M. [Pg.350]

Dishwashing foam stability performance of an LAS-based light-duty liquid (LDL) is strongly affected by the carbon chain distribution, by water hardness, and, under some conditions, by phenyl isomer distribution. Foaming characteristics of C)2 phenyl isomer blends have been reported previously for conditions where LAS is the single anionic surfactant in the formulation (phosphate-built laundry powder) and the level of residual water hardness is low [30,31]. Under these conditions the internal phenyl isomers of C,2 LAS gave better foam performance than the 2-phenyl isomer. [Pg.123]

The analysis of phosphates and phosphonates is a considerably complex task due to the great variety of possible molecular structures. Phosphorus-containing anionics are nearly always available as mixtures dependent on the kind of synthesis carried out. For analytical separation the total amount of phosphorus in the molecule has to be ascertained. Thus, the organic and inorganic phosphorus is transformed to orthophosphoric acid by oxidation. The fusion of the substance is performed by the addition of 2 ml of concentrated sulfuric acid to — 100 mg of the substance. The black residue is then oxidized by a mixture of nitric acid and perchloric acid. The resulting orthophosphate can be determined at 8000 K by atom emission spectroscopy. The thermally excited phosphorus atoms emit a characteristic line at a wavelength of 178.23 nm. The extensity of the radiation is used for quantitative determination of the phosphorus content. [Pg.616]

The fluorescence spectrum of the tris-acridine cryptand A-13 shows the characteristic monomer and excimer bands. Upon complexation with various organic anions (carboxylates, sulfonates, phosphates), the monomer band increases at the expense of the excimer band. The stability of the complexes depends on the contribution of the electrostatic and hydrophobic forces and on the structural complementarity. Stability constants of the complexes ranging from 103 to 107 have been measured. In particular, A-13 binds tightly to mono- and oligonucleotides, and it can discriminate by its optical response between a pyridimic and a purinic sequence. [Pg.320]

The names of heteroatomic electronegative constituents generally take the anion ending -ate, which is also characteristic of the names of anions of oxoacids (sulfate, phosphate, nitrate, etc.). Many such anions are coordination compounds, and these names are assembled using the rules of coordination nomenclature (see Section 4.4, p. 51). [Pg.29]

Ca is a comparatively difficult element for the body to absorb and digest. It is essentially only available for consumption associated with various other moieties (e.g., citrate, phosphate, and other anions). Each Ca source has unique physical, structural, and chemical properties such as mass, density, coordination chemistry, and solubility that are largely determined by the anions associated with the Ca +. Aqueous solubility of various Ca salts can vary markedly and comparisons are frequently made under standardized conditions. The water solubility of CCM is moderate when ranked versus other Ca sources frequently used as dietary supplements and food/beverage fortificants. The solubility of CCM (6 2 3 molar ratio) is 1.10-g salt in 100 ml of H2O at 25 °C (Fox et ah, 1993a). Table 6.4 lists the solubility of various Ca sources in water at specific temperatures, and also includes some information on potential sensory characteristics. [Pg.235]

There has been some development of optical biosensors. Nitrate reductase was immobilised within a sol-gel matrix, with binding of nitrate ion (down to a limit of 10"6 M) causing a characteristic change in the optical absorption [132]. It is notable that this sensor was reversible, allowed selective nitrate detection over other physiologically significant anions and did not lose activity even over six months. Phosphate-binding protein was immobilised on a fibre-optic detector and could be used to measure phosphate with a detection limit of about 10 6 M [133]. [Pg.117]


See other pages where Phosphate anion characteristics is mentioned: [Pg.229]    [Pg.75]    [Pg.254]    [Pg.74]    [Pg.115]    [Pg.286]    [Pg.289]    [Pg.409]    [Pg.630]    [Pg.357]    [Pg.81]    [Pg.406]    [Pg.51]    [Pg.383]    [Pg.513]    [Pg.386]    [Pg.318]    [Pg.141]    [Pg.258]    [Pg.467]    [Pg.228]    [Pg.30]    [Pg.156]    [Pg.121]    [Pg.70]    [Pg.303]    [Pg.1039]    [Pg.382]    [Pg.1283]    [Pg.233]    [Pg.584]    [Pg.39]    [Pg.139]    [Pg.22]    [Pg.552]    [Pg.20]    [Pg.64]    [Pg.269]    [Pg.153]    [Pg.26]    [Pg.143]    [Pg.406]   
See also in sourсe #XX -- [ Pg.137 , Pg.138 ]




SEARCH



Anion characteristics

Phosphate anions

© 2024 chempedia.info