Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenylene oxide copolymers

Blends of Polystyrene with Phenylene Oxide Copolymers... [Pg.84]

PADUNCHEWIT ET AL. Pofy yrau with Phenylene Oxide Copolymers 95... [Pg.95]

Blends of sulfonylated poly(2,6 dimethyl-1,4 phenylene oxide) copolymers were examined. The modified polymers were considered to represent statistical copolymers of the structure... [Pg.59]

In practice, the existence of both UCST and LCST has been established for polymer-solvent systems. About 10 years ago, Schmitt discussed UCST, LCST and combined UCST and LCST behavior in blends of poly(methyl methacrylate) with poly(styrene-co-acrylonitrile) (PMMA-PSAN), Ueda and Karasz reported the existence of UCST in chlorinated polyethylene (CPE) blends using DSC, Inoue found that elastomer blends of cis-l,4-polybutadiene and poly(styrene-co-butadiene) exhibit both UCST and LCST behavior and Cong et al. (72) observed that blends of polystyrene and carboxylated poly(2,6-dimethyl-l,4-phenylene oxide) copolymers with a degree of carboxylation between molar fraction 8% and 10% exhibit both UCST and LCST behavior. They used DSC to establish the phase diagram. [Pg.99]

The chemical features that prohibit crystallinity are main chain flexibility (e.g., rotation), branching, random copolymers or low inter-polymer chain attraction. Normally, polymers are not miscible with each other and on cooling from the melt will separate into different phases. When miscibility is exhibited, e.g., poly(phenylene oxide) (PPO) and PS, crystallisation does not take place. [Pg.71]

Poly(phenylene oxide) Styrene-ethylene block copolymer... [Pg.1280]

A second method for preparing block copolymers is a crosscoupling process. A low molecular weight coupling reagent is added to a mixture of poly(phenylene oxide) and a second homopolymer with phenolic hydroxyl endgroups such as 7 (9) or 8 (10) in the presence of sodium hydroxide and catalyst. [Pg.191]

An example for the synthesis of poly(2,6-dimethyl-l,4-phenylene oxide) - aromatic poly(ether-sulfone) - poly(2,6-dimethyl-1,4-pheny-lene oxide) ABA triblock copolymer is presented in Scheme 6. Quantitative etherification of the two polymer chain ends has been accomplished under mild reaction conditions detailed elsewhere(11). Figure 4 presents the 200 MHz Ir-NMR spectra of the co-(2,6-dimethyl-phenol) poly(2,6-dimethyl-l,4-phenylene oxide), of the 01, w-di(chloroally) aromatic polyether sulfone and of the obtained ABA triblock copolymers as convincing evidence for the quantitative reaction of the parent pol3rmers chain ends. Additional evidence for the very clean synthetic procedure comes from the gel permeation chromatograms of the two starting oligomers and of the obtained ABA triblock copolymer presented in Figure 5. [Pg.107]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

Abbreviations for plastics ABS, acrylonitrile-butadiene-styrene CPVC, chlorinated poly vinyl chloride ECTFE, ethylene-chlorotrifluoroethylene ETFE, ethylene-tetrafluoroethylene PB, polybutylene PE, polyethylene PEEK, poly ether ether ketone PFA, perfluoroalkoxy copolymer POP, poly phenylene oxide PP, polypropylene PVC, polyvinyl chloride PVDC, poly vinylidene chloride PVDF, poly vinylidene fluoride. [Pg.77]

MC MDI MEKP MF MMA MPEG MPF NBR NDI NR OPET OPP OSA PA PAEK PAI PAN PB PBAN PBI PBN PBS PBT PC PCD PCT PCTFE PE PEC PEG PEI PEK PEN PES PET PF PFA PI PIBI PMDI PMMA PMP PO PP PPA PPC PPO PPS PPSU Methyl cellulose Methylene diphenylene diisocyanate Methyl ethyl ketone peroxide Melamine formaldehyde Methyl methacrylate Polyethylene glycol monomethyl ether Melamine-phenol-formaldehyde Nitrile butyl rubber Naphthalene diisocyanate Natural rubber Oriented polyethylene terephthalate Oriented polypropylene Olefin-modified styrene-acrylonitrile Polyamide Poly(aryl ether-ketone) Poly(amide-imide) Polyacrylonitrile Polybutylene Poly(butadiene-acrylonitrile) Polybenzimidazole Polybutylene naphthalate Poly(butadiene-styrene) Poly(butylene terephthalate) Polycarbonate Polycarbodiimide Poly(cyclohexylene-dimethylene terephthalate) Polychlorotrifluoroethylene Polyethylene Chlorinated polyethylene Poly(ethylene glycol) Poly(ether-imide) Poly(ether-ketone) Polyethylene naphthalate Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde copolymer Perfluoroalkoxy resin Polyimide Poly(isobutylene), Butyl rubber Polymeric methylene diphenylene diisocyanate Poly(methyl methacrylate) Poly(methylpentene) Polyolefins Polypropylene Polyphthalamide Chlorinated polypropylene Poly(phenylene oxide) Poly(phenylene sulfide) Poly(phenylene sulfone)... [Pg.959]

Merfeld GD, Karim A, Majumdar B, Satija SK, Paul DR (1998) Interfacial thickness in bilayers of poly(phenylene oxide) and styrenic copolymers. J Polym Sd B Polym Phys 36 3115-3125... [Pg.250]


See other pages where Phenylene oxide copolymers is mentioned: [Pg.84]    [Pg.85]    [Pg.6178]    [Pg.493]    [Pg.493]    [Pg.208]    [Pg.84]    [Pg.85]    [Pg.6178]    [Pg.493]    [Pg.493]    [Pg.208]    [Pg.148]    [Pg.151]    [Pg.326]    [Pg.330]    [Pg.415]    [Pg.555]    [Pg.19]    [Pg.689]    [Pg.44]    [Pg.920]    [Pg.146]    [Pg.4]    [Pg.54]    [Pg.110]    [Pg.188]    [Pg.191]    [Pg.75]    [Pg.165]    [Pg.148]    [Pg.151]    [Pg.326]    [Pg.330]    [Pg.415]    [Pg.19]   


SEARCH



Copolymers oxide)

© 2024 chempedia.info