Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclohexadienone-phenol

In a general reaction known as the cyclohexadienone phenol rearrangement cyclohexa dienones are converted to phenols under conditions of acid catalysis An example is... [Pg.1022]

Claisen rearrangement (Section 24 13) Thermal conversion of an allyl phenyl ether to an o allyl phenol The rearrange ment proceeds via a cyclohexadienone intermediate... [Pg.1279]

Polymerization Mechanism. The mechanism that accounts for the experimental observations of oxidative coupling of 2,6-disubstituted phenols involves an initial formation of aryloxy radicals from oxidation of the phenol with the oxidized form of the copper—amine complex or other catalytic agent. The aryloxy radicals couple to form cyclohexadienones, which undergo enolization and redistribution steps (32). The initial steps of the polymerization scheme for 2,6-dimethylphenol are as in equation 6. [Pg.328]

A second process that occurs concurrently with the dissociation— redistribution process is an intermolecular rearrangement by which cyclohexadienone groups move along a polymer chain. The reaction maybe represented as two electrocycHc reactions analogous to a double Fries rearrangement. When the cyclohexadienone reaches a terminal position, the intermediate is the same as in equation 8, and enolization converts it to the phenol (eq. 9). [Pg.329]

ZINCKE - SUHL Cyclohexadienone synthesis Synthesis of cyclohexadienones from phenols by Fnedel Crafts alkylafion... [Pg.435]

Lead tetrafluoride, generated in situ from lead dioxide and hydrogen fluonde, can replace benzylic hydrogen by fluonne [3] Under sirmlar conditions phenol is simultaneously oxidized to 4,4-difluoro-2,5-cyclohexadienone [4 (equations 3 and 4)... [Pg.120]

Generally the name of a compound should correspond to the most stable tautomer (76AHCS1, p. 5). This is often problematic when several tautomers have similar stabilities, but is a simple and reasonable rule whose violation could lead to naming phenol as cyclohexadienone. Different types of tautomerism use different types of nomenclature. For instance, in the case of annular tautomers both are named, e.g., 4(5)-methylimidazole, while for functional tautomerism, usually the name of an individual tautomer is used because to name all would be cumbersome. In the case of crystal structures, the name should reflect the tautomer actually found therefore, 3-nitropyrazole should be named as such (97JPOC637) and not as 3(5)-nitropyrazole. [Pg.6]

Structural analogues of the /]4-vinylketene E were isolated by Wulff, Rudler and Moser [15]. The enaminoketene complex 11 was obtained from an intramolecular reaction of the chromium pentacarbonyl carbene complex 10. The silyl vinylketene 13 was isolated from the reaction of the methoxy(phenyl)-carbene chromium complex 1 and a silyl-substituted phenylacetylene 12, and -in contrast to alkene carbene complex 7 - gave the benzannulation product 14 after heating to 165 °C in acetonitrile (Scheme 6). The last step of the benzannulation reaction is the tautomerisation of the /]4-cyclohexadienone F to afford the phenol product G. The existence of such an intermediate and its capacity to undergo a subsequent step was validated by Wulff, who synthesised an... [Pg.127]

A plausible pathway is that the aromatisation of the cyclohexadienone 92 by a proton shift is accelerated in the presence of Ac20 under formation of acetate 93. The simultaneously generated acetic acid then cleaves the acetate to form the free phenol 94 (Scheme 44). This effect was observed for the first time during studies towards the total synthesis of the lipid-alternating and anti-atherosclerotic furochromone khellin 99 [64].The furanyl carbene chromium complex 96 was supposed to react with alkoxyalkyne 95 in a benzannulation reaction to give the densely substituted benzofuran derivative 97 (Scheme 45). Upon warming the reaction mixture in tetrahydrofuran to 65 °C the reaction was completed in 4 h, but only a dimerisation product could be isolated. This... [Pg.146]

Wang used method D to fashion a key intermediate for the synthesis of rishirilide B (Fig. 4.20).21 The 2,4-bis-OBoc-3-methyl-benzyl alcohol (31) undergoes the addition of two equivalents of corresponding Grignard reagent to afford phenol 32 in 75% yield (Fig. 4.20). This material was subsequently elaborated by Mejorado in three steps (61% yield) to the corresponding 2,5-chiral cyclohexadienone 33, which was ultimately transformed into ( + )-rishirilide B (34).22... [Pg.100]

BHT (2,6-di-tert-butyl-4-methylphenol), a phenolic antioxidant, on reaction with NO under neutral conditions, results in scavenging of the potentially harmful NO via radical reactions [143]. Sodium phenolate under basic conditions undergoes a Traube-type reaction at the ortho-position to produce a cupferron derivative [144]. When the ortho-positions are sterically blocked and the para-position does not bear a proton, cyclohexadienone diazeniumdiolates may be formed (Scheme 3.12) [145]. [Pg.68]

Rawal s group developed an intramolecular aryl Heck cyclization method to synthesize benzofurans, indoles, and benzopyrans [83], The rate of cyclization was significantly accelerated in the presence of bases, presumably because the phenolate anion formed under the reaction conditions was much more reactive as a soft nucleophile than phenol. In the presence of a catalytic amount of Herrmann s dimeric palladacyclic catalyst (101) [84], and 3 equivalents of CS2CO3 in DMA, vinyl iodide 100 was transformed into ortho and para benzofuran 102 and 103. In the mechanism proposed by Rawal, oxidative addition of phenolate 104 to Pd(0) is followed by nucleophilic attack of the ambident phenolate anion on o-palladium intermediate 105 to afford aryl-vinyl palladium species 106 after rearomatization of the presumed cyclohexadienone intermediate. Reductive elimination of palladium followed by isomerization of the exocyclic double bond furnishes 102. [Pg.285]

The cycloaddition of picryl azide with phenoxyallene took place at the C1-C2 double bond of the allene exclusively to give the triazoline intermediate 97 [89]. This intermediate underwent a facile Claisen rearrangement to yield cyclohexadienone 98, which rapidly tautomerized to phenol 99. [Pg.759]

The last step of the reaction is the keto-enol tautomerization from T 4-cyclohexadienone intermediates (15) to aromatic products (16). Such a step is accompanied with a considerable gain in energy about 80 kJ mol 1 for vinylcarbenes [29], (where a phenol system is formed by the tautomerization step), and about 175 kJ mol 1 for phenylcarbenes [25] (where a naphtol system is produced). The energy barrier for such step should be lower than 40 kJ mol 1 according to previous calculations on similar systems [42],... [Pg.279]

These results led to the proposal of the following mechanism. Decomplex-ation of the central C2 fragment allows coordination of the alkyne (intermediate 119), which then inserts to form the metallacycle 120. Deinsertion (reductive eliminate of the cobalt moiety allows ring closure to give the cyclohexadienone complex 121, which upon decomplexation yields the desired phenol. The regiochemistry of the alkyne insertion determines the ratio of 116 117 (for simplicity, only the sequence leading to 116 has been shown). [Pg.306]

Cyclohexadienones 61 and 64 are readily available from monoprotected hydro-quinones or para-substituted phenols, respectively. Conjugate additions to these symmetrical dienones result in desymmetrization of the prochiral dienone moieties, providing access to multifunctional chiral synthons in two steps from the aromatic precursors (Scheme 7.17) [72]. [Pg.246]

Acid-promoted rearrangement of 4,4-disubstituted cyclohexadienones to 3,4-disubstituted phenols. [Pg.202]

As can be seen, the pathway from the cyclohexadienone to the ortho-rearranged phenol does not imply a jump over an energy barrier (34 kcal/mol), but a tunneling from the vibrational energy levels located at E(vo) = 0 kcal/mol and E(vi) = 3.9 kcal/mol (4.4 kcal/mol for the deuterated compound). Analogous results have been reported for the photo-Fries rearrangement of 2,4-dimethoxy-6-( ara-tolyloxy)-v-triazine (28) to give 2,4-dimethoxy-6-(2-hydroxy-5-meth-ylphenyl)-v-triazine (29) (Scheme 11) [43]. [Pg.57]

Substrates with doubly bonded nitrogen-atom functionalities, e.g. the C=N-R (imino, oxime) group, are usually cleaved by dioxirane to give the corresponding carbonyl product" . A particular case represents the DMD oxidation of the nitronate ions, generated from nitroalkanes" or nitroarenes. For example, the nitronate anion 16 (equation 13) affords initially the cyclohexadienone on oxidation with DMD, which subsequently tau-tomerizes to the phenol as the final product. An exception is the DMD oxidation of an... [Pg.1152]

The voltammetric response of curcumin and carthamin must, in principle, be dominated by the oxidation of the phenol and/or methoxyphenol groups (see Scheme 2.2). The electrochemistry of methoxyphenols has claimed considerable attention because of their applications in organic synthesis [159-163]. As studied by Quideau et al., in aprotic media, 2-methoxyphenols are oxidized in two successive steps into cyclohexadienone derivatives [163], whereas a-(2)- and a-(4-methoxyphenoxy) alkanoic acids undergo electrochemically induced spirolac-tonization to develop synthetically useful orthoquinone bis- and monoketals. In the presence of methanol, the electrochemical pathway involves an initial one-electron loss, followed by proton loss, to form a monoketal radical. This undergoes a subsequent electron and proton loss coupled with the addition of alcohol to form an orthoquinone monoketal. The formal electrode potential for the second electron transfer... [Pg.53]


See other pages where Cyclohexadienone-phenol is mentioned: [Pg.2513]    [Pg.1278]    [Pg.803]    [Pg.761]    [Pg.337]    [Pg.761]    [Pg.127]    [Pg.128]    [Pg.91]    [Pg.564]    [Pg.85]    [Pg.168]    [Pg.670]    [Pg.91]    [Pg.64]    [Pg.422]    [Pg.273]    [Pg.273]    [Pg.963]    [Pg.966]    [Pg.6]    [Pg.793]    [Pg.347]    [Pg.203]    [Pg.269]    [Pg.272]    [Pg.269]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



2,4-cyclohexadienone

4-aryl-2,5-cyclohexadienone 4- phenol

Cyclohexadienone phenol rearrangement

Phenol 4-hydroxy-2,5-cyclohexadienone

Phenols cyclohexadienones

Phenols cyclohexadienones

Phenols from cyclohexadienones

© 2024 chempedia.info