Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase transfer catalysis ammonium halides

Quaternary ammonium compounds (quats) are prepared - by moderate heating of the amine and the alkyl halide in a suitable solvent - as the chlorides or the bromides. Subsequently conversion to the hydroxides may be carried out. Major applications of the quat chlorides are as fabric softeners and as starch cationizing agent. Several bio-active compounds (agrochemicals, pharmaceuticals) possess the quat-structure. Important applications of quat bromides are in phase transfer catalysis and in zeolite synthesis. [Pg.203]

Partitioning of carbocations between addition of nucleophiles and deprotonation, 35, 67 Perchloro-organic chemistry structure, spectroscopy and reaction pathways, 25, 267 Permutations isomerization of pentavalent phosphorus compounds, 9, 25 Phase-transfer catalysis by quaternary ammonium salts, 15, 267 Phenylnitrenes, Kinetics and spectroscopy of substituted, 36, 255 Phosphate esters, mechanism and catalysis of nucleophilic substitution in, 25, 99 Phosphorus compounds, pentavalent, turnstile rearrangement and pseudoration in permutational isomerization, 9, 25 Photochemistry, of aryl halides and related compounds, 20, 191 Photochemistry, of carbonium ions, 9, 129... [Pg.359]

E-(P-Alkylvinyl)phenyliodonium salts react with tetra-n-butylammonium halides to yield the correspondingly substituted Z-haloethenes (80-100% for chloro-, bromo- and iodo-derivatives) [41], In contrast, in the corresponding reaction with Z-(2-benzenesulphonyl-ethenyl)phenyliodonium salts, nucleophilic substitution occurs with retention of configuration to yield the Z-2-benzenesulphonyl-l-haloethenes [42], The ammonium fluorides fail to yield the fluoroethenes, but produce the ethynes by simple elimination [41]. Where carboxylic acids have low solubility in organic solvents, their conversion into the acid chlorides is frequently difficult. Phase-transfer catalysis not only allows the conversion to be effected rapidly, it also results in high yields of a wide range of acid chlorides [43]. [Pg.28]

The application of phase-transfer catalysis to the Williamson synthesis of ethers has been exploited widely and is far superior to any classical method for the synthesis of aliphatic ethers. Probably the first example of the use of a quaternary ammonium salt to promote a nucleophilic substitution reaction is the formation of a benzyl ether using a stoichiometric amount of tetraethylammonium hydroxide [1]. Starks mentions the potential value of the quaternary ammonium catalyst for Williamson synthesis of ethers [2] and its versatility in the synthesis of methyl ethers and other alkyl ethers was soon established [3-5]. The procedure has considerable advantages over the classical Williamson synthesis both in reaction time and yields and is certainly more convenient than the use of diazomethane for the preparation of methyl ethers. Under liquidrliquid two-phase conditions, tertiary and secondary alcohols react less readily than do primary alcohols, and secondary alkyl halides tend to be ineffective. However, reactions which one might expect to be sterically inhibited are successful under phase-transfer catalytic conditions [e.g. 6]. Microwave irradiation and solidrliquid phase-transfer catalytic conditions reduce reaction times considerably [7]. [Pg.69]

In particular, it is not only the cinchona alkaloids that are suitable chiral sources for asymmetric organocatalysis [6], but also the corresponding ammonium salts. Indeed, the latter are particularly useful for chiral PTCs because (1) both pseudo enantiomers of the starting amines are inexpensive and available commercially (2) various quaternary ammonium salts can be easily prepared by the use of alkyl halides in a single step and (3) the olefin and hydroxyl functions are beneficial for further modification of the catalyst. In this chapter, the details of recent progress on asymmetric phase-transfer catalysis are described, with special focus on cinchona-derived ammonium salts, except for asymmetric alkylation in a-amino acid synthesis. [Pg.35]

For the glycosylation of phenols with glycosyl halides, phase-transfer conditions using aqueous sodium or potassium hydroxide and quaternary ammonium salts have also been reported [89-94]. By using phase-transfer catalysis, a method for solid-phase synthesis of aryl glycosides was developed [95]. [Pg.117]

Phase-transfer catalysis. A Polish group reported that the Wittig-Horner reaction with a-phosphoryl sulfoxides, sulfones, and sulfides could be conducted in a two-phase system (aqueous NaOH-methylene chloride) with benzyltriethyl-ammonium chloride as catalyst. Later work showed that a catalyst was not necessary because these sulfur compounds themselves can function as catalysts for phase-transfer reactions. Thus (1) is an effective catalyst for alkylation of ketones by alkyl halides in the presence of 50% aqueous NaOH. Related, but somewhat less active, catalysts are sulfones such as (2), a-disulfoxides (3), and bisphosphonates (4). [Pg.191]

Aikyl fluorides by exchange from alkyl halides or methanesulfonates. The resin used for the reaction is the F form of Amberlyst-A26 (Rohm and Haas), a macroreticular anion-exchange resin containing ammonium groups. When this material and primary alkyl halides or sulfonates are refluxed in a solvent (pentane, hexane, ether), alkyl fluorides are formed, usually in satisfactory yields. Alkenes accompany fluorides in the reaction of secondary substrates. This reaction has been conducted previously under phase-transfer catalysis (5, 322). ... [Pg.95]

The fundamental theory of phase transfer catalysis (PTC) has been reviewed extensively. Rather than attempt to find a mutual solvent for all of the reactive species, an appropriate catalyst is identified which modifies the solubility characteristics of one of the reactive species relative to the phase in which it is poorly solubilized. The literature on the use of PTC in the preparation of nitriles, halides, ether, and dihalocarbenes is extensive. Although PTC in the synthesis of C- and 0-alkylated organic compounds has been studied, the use of PTC in polymer synthesis or polymer modification is not as well studied. A general review of PTC in polymer synthesis was published by Mathias. FrecheE described the use of PTC in the modification of halogenated polymers such as poly(vinyl bromide), and Nishikubo and co-workers disclosed the reaction of poly(chloromethylstyrene) with nucleophiles under PTC conditions. Liotta and co-workers reported the 0-alkylation of bituminous coal with either 1-bromoheptane or 1-bromooctadecane. Poor 0-alkylation efficiencies were reported with alkali metal hydroxides but excellent reactivity and efficiencies were found with the use of quaternary ammonium hydroxides, especially tetrabutyl- and tetrahexylammonium hydroxides. These results are indeed noteworthy because coal is a mineral and is not thought of as a reactive and swellable polymer. Clearly if coal can be efficiently 0-alkylated under PTC conditions, then efficient 0-alkylation of cellulose ethers should also be possible. [Pg.32]

The simplest C-C bond formation reaction is the nucleophilic displacement of a halide ion from a haloalkane by the cyanide ion. This was one of the first reactions for which the kinetics under phase-transfer catalysed conditions was investigated and patented [l-3] and is widely used [e.g. 4-12], The reaction has been the subject of a large number of patents and it is frequently used as a standard reaction for the assessment of the effectiveness of the catalyst. Although the majority of reactions are conducted under liquiddiquid two-phase conditions, it has also been conducted under solidrliquid two-phase conditions [13] but, as with many other reactions carried out under such conditions, a trace of water is necessary for optimum success. Triphase catalysis [14] and use of the preformed quaternary ammonium cyanide [e.g. 15] have also been applied to the conversion of haloalkanes into the corresponding nitriles. Polymer-bound chloroalkanes react with sodium cyanide and cyanoalkanes under phase-transfer catalytic conditions [16],... [Pg.229]

The phase transfer method facilitates the dissolution of carboxylates in nonpolar media. In these solutions, due to relatively poor solvation of anions, carboxylate is an effective nucleophile and reacts readily with alkyl halides. The catalysis of such reactions by amines, ammonium salts and crown ethers and the synthesis of esters by the phase transfer technique is the subject of this chapter. [Pg.85]

Tertiary amines are also known to effect the phase transfer addition of cyanide ion to primary, allylic, and benzylic halides [9]. The reported effect of amine structure on catalytic efficiency closely parallels that reported by Hennis for ester formation in a two-phase system (see Sect. 1.7). Both the nitrogen of the amine and the carbon bearing halide of the alkyl bromide must be sterically accessible for the reaction to succeed. Thus, -hexylamine is effective in concert with -butyl bromide but the combinations of either 5-butyl bromide and -hexylamine or -butyl bromide and cyclohexylamine are not. Tertiary amines are generally more effective than secondary or primary amines. In addition, the yields of primary nitriles decrease dramatically with the size of the primary alkyl bromide from quantitative with n-butyl to only 6% with -decyl bromide when -hexylamine is used as phase transfer catalyst. On the other hand, tributylamine was equally useful as a catalyst for the quantitative conversion of either 1-bromohexane or 1-bromodecane to the corresponding nitriles [9]. In general, these observations accord with those of Hennis and coworkers indicating that this reaction is an example of in situ formation of and catalysis by quaternary ammonium salts [10]. [Pg.98]


See other pages where Phase transfer catalysis ammonium halides is mentioned: [Pg.488]    [Pg.176]    [Pg.365]    [Pg.186]    [Pg.39]    [Pg.32]    [Pg.36]    [Pg.893]    [Pg.57]    [Pg.1285]    [Pg.86]   


SEARCH



Ammonium halide

Halide transfer

Phase ammonium halides

© 2024 chempedia.info