Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution phase diagrams

Principles of Preferential Crystallization on Phase Diagrams. Solutions... [Pg.60]

A volatile oil contains a relatively large fraction of lighter and intermediate oomponents which vaporise easily. With a small drop in pressure below the bubble point, the relative amount of liquid to gas in the two-phase mixture drops rapidly, as shown in the phase diagram by the wide spacing of the iso-vol lines. At reservoir pressures below the bubble point, gas is released In the reservoir, and Is known as solution gas, since above the bubble point this gas was contained in solution. Some of this liberated gas will flow towards the producing wells, while some will remain in the reservoir and migrate towards the crest of the structure to form a secondary gas cap. [Pg.104]

Black oils are a common category of reservoir fluids, and are similar to volatile oils in behaviour, except that they contain a lower fraction of volatile components and therefore require a much larger pressure drop below the bubble point before significant volumes of gas are released from solution. This is reflected by the position of the iso-vol lines in the phase diagram, where the lines of low liquid percentage are grouped around the dew point line. [Pg.104]

A third kind of phase diagram in a two-eomponent system (as shown in figure A2.5.5(e) is one showing liquid-liquid phase separation below a oritieal-solution point, again at a fixed pressure. (On aT,x diagram, the eritieal point is always an extremum of tire two-phase eoexistenee eurve, but not always a maximum. [Pg.615]

We will focus on one experimental study here. Monovoukas and Cast studied polystyrene particles witli a = 61 nm in potassium chloride solutions [86]. They obtained a very good agreement between tlieir observations and tire predicted Yukawa phase diagram (see figure C2.6.9). In order to make tire comparison tliey rescaled the particle charges according to Alexander et al [43] (see also [82]). At high electrolyte concentrations, tire particle interactions tend to hard-sphere behaviour (see section C2.6.4) and tire phase transition shifts to volume fractions around 0.5 [88]. [Pg.2687]

Fig. 6. Phase diagram showing the composition pathway traveled by the casting solution during precipitation by cooling. Point A represents the initial temperature and composition of the casting solution. The cloud point is the point of fast precipitation. In the two-phase region tie lines linking the... Fig. 6. Phase diagram showing the composition pathway traveled by the casting solution during precipitation by cooling. Point A represents the initial temperature and composition of the casting solution. The cloud point is the point of fast precipitation. In the two-phase region tie lines linking the...
Fig. 13. Phase diagram showing the composition pathway traveled by a casting solution during the preparation of porous membranes by solvent evaporation. A, initial casting solution B, point of precipitation and C, point of soHdification. See text. Fig. 13. Phase diagram showing the composition pathway traveled by a casting solution during the preparation of porous membranes by solvent evaporation. A, initial casting solution B, point of precipitation and C, point of soHdification. See text.
In aging, the alloy is heated below the solvus to permit precipitation of fine particles of a second phase 9 (CuAl ). The solvus represents the boundary on a phase diagram between the soHd-solution region and a region consisting of a second phase in addition to the soHd solution. [Pg.234]

Fig. 1. Phase diagram for mixtures (a) upper critical solution temperature (UCST) (b) lower critical solution temperature (LCST) (c) composition dependence of the free energy of the mixture (on an arbitrary scale) for temperatures above and below the critical value. Fig. 1. Phase diagram for mixtures (a) upper critical solution temperature (UCST) (b) lower critical solution temperature (LCST) (c) composition dependence of the free energy of the mixture (on an arbitrary scale) for temperatures above and below the critical value.
Binary Alloys. Aluminum-rich binary phase diagrams show tliree types of reaction between liquid alloy, aluminum solid solution, and otlier phases eutectic, peritectic, and monotectic. Table 16 gives representative data for reactions in tlie systems Al—Al. Diagrams are shown in Figures 10—19. Compilations of phase diagrams may be found in reference 41. [Pg.107]

Sodium thiosulfate, either the anhydrous salt, Na2S202, or the crystalline pentahydrate, is commonly referred to as hypo or crystal hypo. When a concentrated sodium thiosulfate solution (50—60 wt %) is cooled to <48° C, the pentahydrate, containing 63.7% Na2S202, crystallines in monoclinic transparent prisms as shown in the equiUbrium phase diagram (Fig. 1). The monohydrate [55755-19-6] and the heptahydrate [36989-91-0] are also known. [Pg.28]

Fig. 3. Phase diagram for the three kinds of water in PVP aqueous solutions (81). A, free2able water B, bound, nonfree2able water (six per repeat unit) C,... Fig. 3. Phase diagram for the three kinds of water in PVP aqueous solutions (81). A, free2able water B, bound, nonfree2able water (six per repeat unit) C,...
Carbon disulfide is completely miscible with many hydrocarbons, alcohols, and chlorinated hydrocarbons (9,13). Phosphoms (14) and sulfur are very soluble in carbon disulfide. Sulfur reaches a maximum solubiUty of 63% S at the 60°C atmospheric boiling point of the solution (15). SolubiUty data for carbon disulfide in Hquid sulfur at a CS2 partial pressure of 101 kPa (1 atm) and a phase diagram for the sulfur—carbon disulfide system have been published (16). Vapor—Hquid equiHbrium and freezing point data ate available for several binary mixtures containing carbon disulfide (9). [Pg.27]


See other pages where Solution phase diagrams is mentioned: [Pg.517]    [Pg.123]    [Pg.624]    [Pg.2377]    [Pg.2595]    [Pg.324]    [Pg.61]    [Pg.204]    [Pg.297]    [Pg.382]    [Pg.383]    [Pg.445]    [Pg.9]    [Pg.61]    [Pg.329]    [Pg.64]    [Pg.67]    [Pg.67]    [Pg.211]    [Pg.234]    [Pg.7]    [Pg.433]    [Pg.408]    [Pg.409]    [Pg.534]    [Pg.105]    [Pg.161]    [Pg.370]    [Pg.459]    [Pg.151]    [Pg.179]    [Pg.246]    [Pg.384]    [Pg.520]    [Pg.117]    [Pg.320]    [Pg.411]    [Pg.451]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



© 2024 chempedia.info