Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permittance electric

Dielectric constant (permittivity, electric inductive capacity)... [Pg.319]

Liquid crystals as anisotropic fluids exhibit a wide range of complex physical phenomena that can only be understood if the appropriate macroscopic tensor properties are fully characterized. This involves a determination of the number of independent components of the property tensor, and their measurement. Thus a knowledge of refractive indices, electric permittivity, electrical conductivity, magnetic susceptibilities, elastic and viscosity tensors are necessary to describe the switching of liquid crystal films by electric and magnetic fields. Development of new and improved materials relies on the design of liquid crystals having particular macroscopic tensor properties, and the optimum performance of liquid crystal devices is often only possible for materials with carefully specified optical and electrical properties. [Pg.227]

The dielectric constant (permittivity) tabulated is the relative dielectric constant, which is the ratio of the actual electric displacement to the electric field strength when an external field is applied to the substance, which is the ratio of the actual dielectric constant to the dielectric constant of a vacuum. The table gives the static dielectric constant e, measured in static fields or at relatively low frequencies where no relaxation effects occur. [Pg.464]

Polarizability Attraction. AU. matter is composed of electrical charges which move in response to (become electrically polarized in) an external field. This field can be created by the distribution and motion of charges in nearby matter. The Hamaket constant for interaction energy, A, is a measure of this polarizability. As a first approximation it may be computed from the dielectric permittivity, S, and the refractive index, n, of the material (15), where is the frequency of the principal electronic absorption... [Pg.544]

To eliminate the ambiguities in the subject of electricity and magnetism, it is convenient to add charge q to the traditional I, m and t dimensions of mechanics to form the reference dimensions. In many situations permittivity S or permeabiUty ]1 is used in Heu of charge. For thermal problems temperature Tis considered as a reference dimension. Tables 2 and 3 Hst the exponents of dimensions of some common variables in the fields of electromagnetism and heat. [Pg.104]

Heuristic Fxplanation As we can see from Fig. 22-31, the DEP response of real (as opposed to perfect insulator) particles with frequency can be rather complicated. We use a simple illustration to account for such a response. The force is proportional to the difference between the dielectric permittivities of the particle and the surrounding medium. Since a part of the polarization in real systems is thermally activated, there is a delayed response which shows as a phase lag between D, the dielectric displacement, and E, the electric-field intensity. To take this into account we may replace the simple (absolute) dielectric constant by the complex (absolute) dielectric... [Pg.2011]

In the simplest case of one-dimensional steady flow in the x direction, there is a parallel between Eourier s law for heat flowrate and Ohm s law for charge flowrate (i.e., electrical current). Eor three-dimensional steady-state, potential and temperature distributions are both governed by Laplace s equation. The right-hand terms in Poisson s equation are (.Qy/e) = (volumetric charge density/permittivity) and (Qp // ) = (volumetric heat generation rate/thermal conductivity). The respective units of these terms are (V m ) and (K m ). Representations of isopotential and isothermal surfaces are known respectively as potential or temperature fields. Lines of constant potential gradient ( electric field lines ) normal to isopotential surfaces are similar to lines of constant temperature gradient ( lines of flow ) normal to... [Pg.2]

It can be shown that the electric susceptibility is related to the relative permittivity or dielectric constant e of the particle by the relationship [88]... [Pg.165]

The insulating property of any insulator will break down in a sufficiently strong electric field. The dielectric strength is defined as the electric strength (V/m) which an insulating material can withstand. For plastics the dielectric strength can vary from 1 to 1000 MV/m. Materials may be compared on the basis of their relative permittivity (or dielectric constant). This is the ratio of the permittivity of the material to the permittivity of a vacuum. The ability of a... [Pg.32]

For many problems it is convenient to separate the piezoelectric (i.e., strain induced) polarization P from electric-field-induced polarizations by defining D = P + fi , where s is the permittivity tensor. For uniaxial strain and electric field along the 1 axis, when the material is described by Eq. (4.1) with the E term omitted. [Pg.73]

Nonlinear properties of normal dielectrics can be studied in the elastic regime by the method of shock compression in much the same way nonlinear piezoelectric properties have been studied. In the earlier analysis it was shown that the shape of the current pulse delivered to a short circuit by a shock-compressed piezoelectric disk was influenced by strain-induced changes in permittivity. When a normal dielectric disk is biased by an electric field and is subjected to shock compression, a current pulse is also delivered into an external circuit. In the short-circuit approximation, the amplitude of this current pulse provides a direct measure of the shock-induced change in permittivity of the dielectric. [Pg.85]

Table 8-2 lists several physical properties pertinent to our concern with the effects of solvents on rates for 40 common solvents. The dielectric constant e is a measure of the ability of the solvent to separate charges it is defined as the ratio of the electric permittivity of the solvent to the permittivity of the vacuum. (Because physicists use the symbol e for permittivity, some authors use D for dielectric constant.) Evidently e is dimensionless. The dielectric constant is the property most often associated with the polarity of a solvent in Table 8-2 the solvents are listed in order of increasing dielectric constant, and it is evident that, with a few exceptions, this ranking accords fairly well with chemical intuition. The dielectric constant is a bulk property. [Pg.389]

Other SI electrical units are determined from the first four via the fundamental constants eo and tiQ, the permittivity and permeability of free space respectively. The ampere is defined in terms of the force between two straight parallel infinitely long conductors placed a metre apart, and once this has been defined the coulomb must be such that one coulomb per second passes along a conductor if it is carrying a current of one ampere. [Pg.20]

The relative permittivity, the electric susceptibility and the refractive index n are related by... [Pg.257]

So is the relative permittivity of the elastomer E is the applied electric field V is the applied voltage f is the film thickness... [Pg.282]

Interesting phenomena are observed by increasing the concentration of reversed micelles, changing the temperature or pressure, applying high electric fields, or adding suitable solutes, In some conditions, in fact, a dramatic increase in some physicochemical properties has been observed, such as viscosity, conductance, static permittivity, and sound absorption [65,80,173,233,243,249,255,264-269],... [Pg.495]

This hypothesis received support from the electrical studies of Braden Clarke (1974) and Crisp, Ambersley Wilson (1980), who attributed maxima in curves of permittivity and conductivity against time to the liberation of water and its subsequent reabsorption into the matrix (Figure 93a,b). Crisp, Ambersley Wilson (1980) also considered that these maxima were due to generation of both water and ionic zinc species. Subsequently, as the reaction proceeds the zinc ions are fixed as insoluble zinc eugenolate. [Pg.325]


See other pages where Permittance electric is mentioned: [Pg.12]    [Pg.110]    [Pg.148]    [Pg.280]    [Pg.127]    [Pg.797]    [Pg.304]    [Pg.12]    [Pg.110]    [Pg.148]    [Pg.280]    [Pg.127]    [Pg.797]    [Pg.304]    [Pg.311]    [Pg.190]    [Pg.203]    [Pg.207]    [Pg.208]    [Pg.209]    [Pg.500]    [Pg.152]    [Pg.155]    [Pg.155]    [Pg.342]    [Pg.2006]    [Pg.2011]    [Pg.159]    [Pg.94]    [Pg.99]    [Pg.332]    [Pg.73]    [Pg.86]    [Pg.248]    [Pg.282]    [Pg.905]    [Pg.560]    [Pg.38]   
See also in sourсe #XX -- [ Pg.148 , Pg.155 , Pg.159 ]




SEARCH



Correlation of polymer content and electric permittivity

Dielectric permittivity static electric fields

Electric permittivity

Electric permittivity measurements

Electric permittivity of vacuum

Electrical permittivity

Electrical permittivity

Electrical permittivity of vacuum

Electrical permittivity, relative

Optical permittivity electric field effects

Permittance

Permittivities

Permittivity

Relative electric permittivity

© 2024 chempedia.info