Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permeation anion

Donnan Equilibrium and Electroneutrality Effects for charged membranes are based on the fact that charged functional groups attract counter-ions. This leads to a deficit of co-ions in the membrane and the development of Donnan potential. The membrane rejection increases with increased membrane charge and ion valence. This principle has been incorporated into the extended Nemst-Planck equation, as described in the NF section. This effect is responsible for the shift in pH, which is often observed in RO. Chloride passes through the membrane, while calcium is retained, which means that water has to shift its dissociation equilibrium to provide protons to balance the permeating anions (Mallevialle et al. (1996)). [Pg.52]

Relatively unambiguous monotonic SARs also occur where activity depends on the ionization of a particular functional group. A classic example (Fig. 5) is that of the antibacterial sulfonamides where activity is exerted by competitive inhibition of the incorporation of j -amin ohenzoic acid into foHc acid (27). The beU-shaped relationship is consistent with the sulfonamide acting as the anion but permeating into the cell as the neutral species. [Pg.272]

Electrodialysis. Electro dialysis processes transfer ions of dissolved salts across membranes, leaving purified water behind. Ion movement is induced by direct current electrical fields. A negative electrode (cathode) attracts cations, and a positive electrode (anode) attracts anions. Systems are compartmentalized in stacks by alternating cation and anion transfer membranes. Alternating compartments carry concentrated brine and purified permeate. Typically, 40—60% of dissolved ions are removed or rejected. Further improvement in water quaUty is obtained by staging (operation of stacks in series). ED processes do not remove particulate contaminants or weakly ionized contaminants, such as siUca. [Pg.262]

Electrically assisted transdermal dmg deflvery, ie, electrotransport or iontophoresis, involves the three key transport processes of passive diffusion, electromigration, and electro osmosis. In passive diffusion, which plays a relatively small role in the transport of ionic compounds, the permeation rate of a compound is deterrnined by its diffusion coefficient and the concentration gradient. Electromigration is the transport of electrically charged ions in an electrical field, that is, the movement of anions and cations toward the anode and cathode, respectively. Electro osmosis is the volume flow of solvent through an electrically charged membrane or tissue in the presence of an appHed electrical field. As the solvent moves, it carries dissolved solutes. [Pg.145]

Nonionic surfactants, including EO-PO block copolymers, may be readily separated from anionic surfactants by a simple batch ion exchange method [21] analytical separation of EO-PO copolymers from other nonionic surfactants is possible by thin-layer chromatography (TLC) [22,23] and paper chromatography [24], and EO-PO copolymers may themselves be separated into narrow molecular weight fractions on a preparative scale by gel permeation chromatography (GPC) [25]. [Pg.768]

This review addresses the issues of the chemical and physical processes whereby inorganic anions and cations are selectively retained by or passed through cell membranes. The channel and carrier mechanisms of membranes permeation are treated by means of model systems. The models are the planar lipid bilayer for the cell membrane, Gramicidin for the channel mechanism, and Valinomycin for the carrier mechanism. [Pg.176]

Chloride channels are membrane proteins that allow for the passive flow of anions across biological membranes. As chloride is the most abundant anion under physiological conditions, these channels are often called chloride channels instead of anion channels, even though other anions (such as iodide or nitrate) may permeate better. As some CLC proteins function as CF-channels, whereas other perform CF/H+-exchangers are also mentioned here. [Pg.371]

Neurotransmitter transport can be electrogenic if it results in the net translocation of electrical charge (e.g. if more cations than anions are transferred into the cell interior). Moreover, some transporters may direction-ally conduct ions in a manner akin to ligand-gated ion channels this ion flux is not coupled to substrate transport and requires a separate permeation pathway associated with the transporter molecule. In the case of the monoamine transporters (DAT, NET, SERT) the sodium current triggered by amphetamine, a monoamine and psychostimulant (see Fig. 4) is considered responsible for a high internal sodium concentration... [Pg.839]

Figure 6. Bipolar precipitates consisting of an inner anion-selective layer and an outer cation-selective layer.19 When the electrode is polarized to the more noble side, protons and chloride ions are kept from permeating through the film, so that anodic dissolution of the substrate metal is blocked. (Reproduced from N. Sato, Corrosion, 45 354, 1989, Fig. 24 with permission of NACE International.)... Figure 6. Bipolar precipitates consisting of an inner anion-selective layer and an outer cation-selective layer.19 When the electrode is polarized to the more noble side, protons and chloride ions are kept from permeating through the film, so that anodic dissolution of the substrate metal is blocked. (Reproduced from N. Sato, Corrosion, 45 354, 1989, Fig. 24 with permission of NACE International.)...
Bormann, J, Hamill, OP and Sakmann, B (1987) Mechanism of anion permeation through channels gated by glycine and y-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond). 385 243-286. [Pg.248]

The main components of each fraction were purified by a combination of gel permeation and anionic interchange chromatography and their structure partially elucidated. [Pg.570]

Figure 7.7 Permeation of anionic warfarin (pH 11) through octanol-soaked (impregnated) microfilter as a function of sodium ion concentration. Figure 7.7 Permeation of anionic warfarin (pH 11) through octanol-soaked (impregnated) microfilter as a function of sodium ion concentration.
One observes, comparing Eqs. (45) and (46) for permeating ions of comparable size and valence with Eq. (47), that the diffusion of cations across the negatively charged pore is increased by the potential gradient. In contrast, the diffusion of anions is decreased by the electrical forces. In other words, P+ or P is composed of the permeability coefficient of its neutral image upon which the contribution... [Pg.260]

The plot of permeability coefficient versus molecular radius in Figure 10 shows the interdependence of molecular size and electric charge. The permeability of the solutes decreases with increasing size. The protonated amines permeate the pores faster than neutral solutes of comparable size, and the anions of weak acids permeate the pores at a slower rate. The transport behavior of the ionic permeants is consistent with a net negatively charged paracellular route. These results are phenomenologically identical to those found in the transport kinetics of... [Pg.265]

The polymerization was carried out in THF under the conditions of high vacuum or argon atmosphere with a catalytic amount of alkyllithium as an initiator. Anionic polymerization of 3a with n-BuLi in THF followed by quenching with ethanol afforded polymer 6 in 56 % yield. The molecular weight distribution of the polymer was determined by gel permeation chromatography (GPC), calibrated by polystyrene standards, with chlorofrom as eluent Mn = 6.1xl0"4, Mw/Mn = 1.3. [Pg.287]


See other pages where Permeation anion is mentioned: [Pg.139]    [Pg.144]    [Pg.581]    [Pg.387]    [Pg.81]    [Pg.187]    [Pg.292]    [Pg.172]    [Pg.312]    [Pg.156]    [Pg.363]    [Pg.542]    [Pg.424]    [Pg.196]    [Pg.198]    [Pg.164]    [Pg.554]    [Pg.278]    [Pg.984]    [Pg.74]    [Pg.58]    [Pg.48]    [Pg.51]    [Pg.666]    [Pg.729]    [Pg.754]    [Pg.136]    [Pg.322]    [Pg.153]    [Pg.154]    [Pg.516]    [Pg.540]    [Pg.464]    [Pg.179]   
See also in sourсe #XX -- [ Pg.67 , Pg.68 ]




SEARCH



© 2024 chempedia.info