Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permeability in Membranes

The perfluorinated ionomer membranes are widely used as separators in electrolytic and fuel cells. A primary consideration [Pg.479]


Yu.P.Yampolskii, Sorption and Gas and Vapor Permeability in Membranes Based on Glassy Polymers, in A.M.Mika and T.Z.Winnicki (Eds.), Advances in Membrane Phenomena and Processes, Wroclaw Technical University Press, 1989, p. 129. [Pg.58]

Gas Dehydration Water is extremely permeable in polymer membranes. Dehydration of air and other gases is a growing membrane application. [Pg.2047]

Finally, let us discuss the adsorption isotherms. The chemical potential is more difficult to evaluate adequately from integral equations than the structural properties. It appears, however, that the ROZ-PY theory reflects trends observed in simulation perfectly well. The results for the adsorption isotherms for a hard sphere fluid in permeable multiple membranes, following from the ROZ-PY theory and simulations for a matrix at p = 0.6, are shown in Fig. 4. The agreement between the theoretical results and compu-... [Pg.318]

Many fluorine containing polymers are being evaluated for possible use as permeable selective membranes. The fluorine containing polymers have been shown to increase permeation rates without decreasing in the selec-... [Pg.57]

The physical characterisation of membrane structure is important if the correct membrane is to be selected for a given application. The pore structure of microfiltration membranes is relatively easy to characterise, SEM and AFM being the most convenient method and allowing three-dimensional structure of the membrane to be determined. Other techniques such as the bubble point, mercury intrusion or permeability methods use measurements of the permeability of membranes to fluids. Both the maximum pore size and the pore size distribution may be determined.1315 A parameter often quoted in manufacturer s literature is the nominal... [Pg.359]

Amphotericin B, is a polyene antibiotic, used in the therapy of systemic fungal infections. Its mode of action exploits differences in membrane composition between the pathogen and the human host. Ergosterol, the predominant sterol of fungi, plants, and some protozoan parasites, interacts with Amphotericin B, resulting in an increased ion permeability of the membrane. Humans contain cholesterol, which has a low affinity for amphotericin B. [Pg.178]

There are aspects of cell membranes other than their permeability to water and solutes that also play a critical role in the responses of cells to freezing. The structure of the plasma membrane allows cells to supercool and probably determines their ice-nucleation temperature. The nucleation temperature along with the permeability of membranes to water are the chief determinants of whether cells cooled at... [Pg.379]

The field of modified electrodes spans a wide area of novel and promising research. The work dted in this article covers fundamental experimental aspects of electrochemistry such as the rate of electron transfer reactions and charge propagation within threedimensional arrays of redox centers and the distances over which electrons can be transferred in outer sphere redox reactions. Questions of polymer chemistry such as the study of permeability of membranes and the diffusion of ions and neutrals in solvent swollen polymers are accessible by new experimental techniques. There is hope of new solutions of macroscopic as well as microscopic electrochemical phenomena the selective and kinetically facile production of substances at square meters of modified electrodes and the detection of trace levels of substances in wastes or in biological material. Technical applications of electronic devices based on molecular chemistry, even those that mimic biological systems of impulse transmission appear feasible and the construction of organic polymer batteries and color displays is close to industrial use. [Pg.81]

Crowe, L.M. Crowe, J.H. (1986). Hydration-dependent phase transitions and permeability properties of biological membranes. In Membranes, Metabolism and Dry Organisms, ed. A.C. Leopold, pp. 210-30. Ithaca, N.Y. Comstock Publishing Associates. [Pg.126]

A dual isotope labeling technique [85] has been used to measure membrane permeability in plant cells, based on the selective permeabiHty of the membranes of living cells to tritiated water and carbon-14 labeled mannitol. Kieran [29] showed that the results of the dual isotope labeling and Evan s Blue staining methods correlated well as indicators of cell viability however, the latter was preferable in terms of reagent cost and ease of analysis. [Pg.148]

The following factors affect net diffusion of a substance (1) Its concentration gradient across the membrane. Solutes move from high to low concentration. (2) The electrical potential across the membrane. Solutes move toward the solution that has the opposite charge. The inside of the cell usually has a negative charge. (3) The permeability coefficient of the substance for the membrane. (4) The hydrostatic pressure gradient across the membrane. Increased pressure will increase the rate and force of the collision between the molecules and the membrane. (5) Temperature. Increased temperature will increase particle motion and thus increase the frequency of collisions between external particles and the membrane. In addition, a multitude of channels exist in membranes that route the entry of ions into cells. [Pg.423]

The actions of proteins isolated from sea anemones, or other coelenterates, involve mechanisms different from those described for saponins. Thus, hemolysins from sea anemone R macrodactylus are capable of forming ion channels directly in membranes (98). The basic protein from S. helianthus also forms channels in black-lipid membranes. These channels are permeable to cations and show rectification (99). This ability of S. helianthus toxin III to form channels depends upon the nature of the host lipid membrane (100). Cytolysin S. helianthus binds to sphingomyelin and this substance may well serve as the binding site in cell membranes (101-106). [Pg.324]

These main objectives can be reached only by modifying the structures and compositions of primarily the anode (methanol electrode) and secondarily the cathode (oxygen electrode) as discussed in Sections 111 and IV, respectively. In addition. Section IV discusses the conception of new proton exchange membranes with lower methanol permeability in order to improve the cathode characteristics. Section V deals with the progress in the development of DMFCs, while in Section VI the authors attempt to make a prognosis on the status of DMFC R D and its potential applications. [Pg.73]

Two questions arise in connection with the ionic permeability present in membranes How can the ionic concentration gradients between the two sides of the membrane be preserved despite leakage of ions, and how is the membrane potential related to these gradients These questions have been explored in extended studies stiU continuing. [Pg.577]

Avdeef, A. High-throughput Measurement of Membrane Permeability. In Drug Bioavailability (Methods and Principles in Medicinal Chemistry), Van de Waterbeemd, H Lennemas, H Armrsson, P. (eds.), Wiley-VCH, Weinheim, 2003, pp. 46-71. [Pg.80]

Equation (20-80) requires a mass transfer coefficient k to calculate Cu, and a relation between protein concentration and osmotic pressure. Pure water flux obtained from a plot of flux versus pressure is used to calculate membrane resistance (t ically small). The LMH/psi slope is referred to as the NWP (normal water permeability). The membrane plus fouling resistances are determined after removing the reversible polarization layer through a buffer flush. To illustrate the components of the osmotic flux model. Fig. 20-63 shows flux versus TMP curves corresponding to just the membrane in buffer (Rfouimg = 0, = 0),... [Pg.52]

Diffusion-mediated release of root exudates is likely to be affected by root zone temperature due to temperature-dependent changes in the speed of diffusion processes and modifications of membrane permeability (259,260). This might explain the stimulation of root exudation in tomato and clover at high temperatures, reported by Rovira (261), and also the increase in exudation of. sugars and amino acids in maize, cucumber, and strawberry exposed to low-temperature treatments (5-10°C), which was mainly attributed to a disturbance in membrane permeability (259,262). A decrease of exudation rates at low temperatures may be predicted for exudation processes that depend on metabolic energy. This assumption is supported by the continuous decrease of phytosiderophore release in Fe-deficient barley by decreasing the temperature from 30 to 5°C (67). [Pg.74]

Cakmak and H. Marschner, Increase in membrane permeability and exudation in roots of zinc deficient plants. J. Plant Physiol. 132 356 (1988). [Pg.78]

As discussed above, lipid membranes are dynamic structures with heterogeneous structure involving different lipid domains. The coexistence of different kinds of domains implies that boundaries must exist. The appearance of leaky interfacial regions, or defects, has been suggested to play a role in abrupt changes in solute permeabilities in the two-phase coexistence regions [91,92]. [Pg.817]


See other pages where Permeability in Membranes is mentioned: [Pg.86]    [Pg.479]    [Pg.289]    [Pg.5]    [Pg.200]    [Pg.217]    [Pg.86]    [Pg.479]    [Pg.289]    [Pg.5]    [Pg.200]    [Pg.217]    [Pg.139]    [Pg.63]    [Pg.232]    [Pg.2030]    [Pg.2132]    [Pg.2194]    [Pg.312]    [Pg.524]    [Pg.181]    [Pg.110]    [Pg.10]    [Pg.161]    [Pg.279]    [Pg.582]    [Pg.56]    [Pg.57]    [Pg.91]    [Pg.48]    [Pg.52]    [Pg.67]    [Pg.754]    [Pg.820]    [Pg.821]    [Pg.825]   


SEARCH



Membranes, permeable

© 2024 chempedia.info