Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perchlorate radical

No effort to examine this possibility was undertaken until Byberg observed a similarity between the quadrupole coupling tensors in chloryl and perchlorate radicals. The species CIO4 could be interpreted as an exchange coupled complex of CIO2 and O2 [7]. [Pg.4]

Van Huis and Schaefer [8] found that CIO4 has a minimum electronic energy structure of C2v symmetry in contrast with an experimental assignment from infrared spectra by Grothe and Willner [9]. These authors arrived at C31, as the appropriate symmetry group for CIO4 in a neon matrix. The continued interest in the perchlorate radical has prompted the present small study of its electronic features and bonding characteristics. [Pg.4]

It has been known that the electrolysis in an MeCN- NaClO system generates an acid The hydrogen has to originate from the solvent. A mechanism for hydrogen abstraction from acetonitrile by the electrooxidatively generated radical 104- to produce perchloric acid has been proposed, but no evidence for the succinonitrile formation appeared (Eq. (5)). The detection of the 104- radical by the aid of HSR was tried But it was found to be difficult to differentiate between the perchlorate radical and the radical from chlorine dioxide The electrolysis in a CH Clj—... [Pg.174]

A low molecular weight of polytetrahydrofuran was accidentally found in an anodic solution, when an electric current was passed through a solution of styrene with tetrabutylammonium perchlorate in tetra-hydrofuran (23), At the cathode styrene was polymerized and no copolymers were observed in either solution. A possible explanation of the initiation of polymerization can be offerend to account for the preliminary experimental results obtained. It may have been caused by interaction of the perchlorate radical formed at the anode [Eq. (11)] with tetrahydrofuran, providing an axonium ion. [Pg.389]

The perchlorate ion has a high anodic discharge potential, and only in a few solvents, such as acetonitrile or nitromethane, is the perchlorate ion oxidized in preference to the solvent. When oxidized, the primarily formed perchlorate radical decomposes into oxygen and chlorodioxide radical [259]. [Pg.273]

The standard potential for the anodic reaction is 1.19 V, close to that of 1.228 V for water oxidation. In order to minimize the oxygen production from water oxidation, the cell is operated at a high potential that requires either platinum-coated or lead dioxide anodes. Various mechanisms have been proposed for the formation of perchlorates at the anode, including the discharge of chlorate ion to chlorate radical (87—89), the formation of active oxygen and subsequent formation of perchlorate (90), and the mass-transfer-controUed reaction of chlorate with adsorbed oxygen at the anode (91—93). Sodium dichromate is added to the electrolyte ia platinum anode cells to inhibit the reduction of perchlorates at the cathode. Sodium fluoride is used in the lead dioxide anode cells to improve current efficiency. [Pg.67]

Protonic initiation is also the end result of a large number of other initiating systems. Strong acids are generated in situ by a variety of different chemistries (6). These include initiation by carbenium ions, eg, trityl or diazonium salts (151) by an electric current in the presence of a quartenary ammonium salt (152) by halonium, triaryl sulfonium, and triaryl selenonium salts with uv irradiation (153—155) by mercuric perchlorate, nitrosyl hexafluorophosphate, or nitryl hexafluorophosphate (156) and by interaction of free radicals with certain metal salts (157). Reports of "new" initiating systems are often the result of such secondary reactions. Other reports suggest standard polymerization processes with perhaps novel anions. These latter include (Tf)4Al (158) heteropoly acids, eg, tungstophosphate anion (159,160) transition-metal-based systems, eg, Pt (161) or rare earths (162) and numerous systems based on tri flic acid (158,163—166). Coordination polymerization of THF may be in a different class (167). [Pg.362]

Unsaturated ketones react with phenyUiydrazines to form hydrazones, which under acidic conditions cyclize to pyrazolines (35). Oxidation, instead of acid treatment, of the hydrazone with thianthrene radical cation (TH " ) perchlorate yields pyrazoles this oxidative cyclization does not proceed via the pyrazoline (eq. 4). [Pg.313]

Quinolinium 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide dimensions, 2, 110 Quinolinium iodide, 1-alkyl-Ladenburg rearrangement, 2, 300 Quinolinium iodide, 1-methyl-Ladenburg rearrangement, 2, 300, 335 Quinolinium iodide, [l-methyl-4-[3(5)-pyrazolyl]-blood sugar level and, 5, 291 Quinolinium perchlorate, 1-ethoxy-hydroxymethylation, 2, 300 Quinolinium perchlorate, 1-methyl-nitration, 2, 318 Quinolinium salts alkylation, 2, 293 Beyer synthesis, 2, 474 electrophilic substitution, 2, 317 free radical alkylation, 2, 45 nitration, 2, 188 reactions... [Pg.832]

When 10-phenylphenothiazine (104) (and 10-phenylphenoxazine) was brominated in acetic acid a number of products were isolated. Pyridine perbromide, though, only brominated the phenyl substituent (Scheme 47). The suggestion that acetic acid bromination might involve the radical cation of the substrate (104) was confirmed by generating the radical cation of the substrate (104) with perchloric acid prior to bromination. Again a 43% yield of the 3-bromo product and multiple bromination products were observed (Scheme 47). The reaction of 10-phenylphenoxazine with pyridine perbromide appeared to be at least partially electrophilic the products... [Pg.307]

Another redox reaction leading to arenediazonium salts was described by Morkov-nik et al. (1988). They showed that the perchlorates of the cation-radicals of 4-A,A-dimethylamino- and 4-morpholinoaniline (2.63) react with gaseous nitric oxide in acetone in a closed vessel. The characteristic red coloration of these cation-radical salts (Michaelis and Granick, 1943) disappears within 20 min., and after addition of ether the diazonium perchlorate is obtained in 84% and 92% yields, respectively. This reaction (Scheme 2-39) is important in the context of the mechanism of diazotization by the classical method (see Sec. 3.1). [Pg.38]

Morkovnik et al. (1989) found experimentally that the addition of an equimolar amount of 4-morpholino- or 4-dimethylaminoaniline to a suspension of nitrosyl perchlorate in 100 % acetic acid, dioxan, or acetonitrile yields a mixture of the diazonium perchlorate and the perchlorate salt of the amine radical cation, with liberation of gaseous nitric oxide. Analogous results in benzene, including evidence for radicals by ESR spectroscopy and by spin trapping experiments, were obtained by Reszka et al. (1990). [Pg.43]

Ce4+ is a versatile one-electron oxidizing agent (E° = - 1.71 eV in HC10466 capable of oxidizing sulfoxides. Rao and coworkers66 have described the oxidation of dimethyl sulfoxide to dimethyl sulfone by Ce4+ cation in perchloric acid and proposed a SET mechanism. In the first step DMSO rapidly replaces a molecule of water in the coordination sphere of the metal (Ce v has a coordination number of 8). An intramolecular electron transfer leads to the production of a cation which is subsequently converted into sulfone by reaction with water. The formation of radicals was confirmed by polymerization of acrylonitrile added to the medium. We have written a plausible mechanism for the process (Scheme 8), but there is no compelling experimental data concerning the inner versus outer sphere character of the reaction between HzO and the radical cation of DMSO. [Pg.1061]

A mixture of water/pyridine appears to be the solvent of choice to aid carbenium ion formation [246]. In the Hofer-Moest reaction the formation of alcohols is optimized by adding alkali bicarbonates, sulfates [39] or perchlorates. In methanol solution the presence of a small amount of sodium perchlorate shifts the decarboxylation totally to the carbenium ion pathway [31]. The structure of the carboxylate can also support non-Kolbe electrolysis. By comparing the products of the electrolysis of different carboxylates with the ionization potentials of the corresponding radicals one can draw the conclusion that alkyl radicals with gas phase ionization potentials smaller than 8 e V should be oxidized to carbenium ions [8 c] in the course of Kolbe electrolysis. This gives some indication in which cases preferential carbenium ion formation or radical dimerization is to be expected. Thus a-alkyl, cycloalkyl [, ... [Pg.116]

Finally, in a recent study by Walling and El-Taliawi (216) it was shown that solvolytically generated vinyl cations may be reduced by Fe ions in solution to the corresponding vinyl radical. When 2-buten-2-yl triflate was solvolyzed in concentrated ferrous perchlorate solution in the presence of acrylonitrile monomer, polymerization of the acrylonitrile was observed. No such polymerization occurred under identical conditions in the absence of Fe ions. It seems that the polymerization of acrylonitrile was initiated by the vinyl radicals formed by reduction of the intermediate vinyl cation by Fe as follows (216) ... [Pg.314]

Strongly acidic vanadium(V) oxidises bromide in a sulphate ion medium . The reaction is first-order in both oxidant and sulphuric acid. The dependence of the rate on bromide ion concentration is complex and a maximum is exhibited at certain acidities. A more satisfactory examination is that of Julian and Waters who employed a perchlorate ion medium and controlled the ionic strength. They used several organic substrates which acted as captors for bromine radical species. The rate of reduction of V(V) is independent of the substrate employed and almost independent of substrate concentration. At a given acidity the kinetics are... [Pg.358]

The very fast oxidation of the radical precludes its detection and identification by esr however, reacting mixtures are capable of initiating polymerisation of acrylonitrile. The oxidations of allylic alcohols by V(V) perchlorate are ca. thirty times faster than those of saturated alcohols. This is supporting evidence for radical intermediates in view of the expected delocalisation of the free electron... [Pg.377]


See other pages where Perchlorate radical is mentioned: [Pg.3]    [Pg.145]    [Pg.6]    [Pg.225]    [Pg.207]    [Pg.298]    [Pg.263]    [Pg.306]    [Pg.350]    [Pg.3]    [Pg.145]    [Pg.6]    [Pg.225]    [Pg.207]    [Pg.298]    [Pg.263]    [Pg.306]    [Pg.350]    [Pg.277]    [Pg.278]    [Pg.270]    [Pg.117]    [Pg.518]    [Pg.439]    [Pg.172]    [Pg.45]    [Pg.909]    [Pg.917]    [Pg.261]    [Pg.252]    [Pg.902]    [Pg.1021]    [Pg.94]    [Pg.99]    [Pg.117]    [Pg.132]    [Pg.217]    [Pg.286]    [Pg.378]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Radical cation perchlorates, synthesis

Thianthrene cation radical perchlorate

© 2024 chempedia.info