Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Per-iodates

Periodic acid oxidation (Section 15.12) finds extensive use as an analytical method in carbohydrate chemistry. Structural information is obtained by measuring the number of equivalents of periodic acid that react with a given compound and by identifying the reaction products. A vicinal diol consumes one equivalent of per-iodate and is cleaved to two carbonyl compounds ... [Pg.1059]

Two ferrous per-iodates are described by Kimmins,3namelyFe5(I06)2 and FeHs(I06). The former is a brick-red crystalline salt produced on adding ferrous sulphate to a solution of K4I209. FeH3(IOe) results as a light brown powder on adding a solution of Na2H3I06 to ferrous sulphate. [Pg.108]

Iron and Iodine—Iodides, Per-iodates, and Iodates of Iron. [Pg.286]

Uronic acid Gluco- samine Sul- fate Re- ducing sugar Per- iodate reduced Sacch- aride Meta- chro- masia Anti- coagulant... [Pg.151]

Add 1 drop (0 05 ml.) of concentrated nitric acid to 2 0 ml. of a 0 5 per cent, aqueous solution of paraperiodic acid (HjIO,) contained in a small test-tube and shake well. Then introduce 1 op or a small crystal of the compound. Shake the mixture for 15 seconds and add 1-2 drops of 5 per cent, aqueous silver nitrate. The immediate production of a white precipitate (silver iodate) constitutes a positive test and indicates that the organic compound has been oxidised by the periodic acid. The test is based upon the fact that silver iodate is sparingly soluble in dilute nitric acid whereas silver periodate is very soluble if too much nitric acid is present, the silver iodate will not precipitate. [Pg.447]

Place 2 ml. of the periodic acid reagent in a small test tube, add one drop (no more—otherwise the silver iodate, if formed, will fail to precipitate) of concentrated nitric acid, and shake well. Add one drop or a small crystal of the compound to be tested, shake the mixture for 15-20 seconds, and then add 1-2 drops of 3 per cent, silver nitrate solution. The instantaneous formation of a white precipitate of silver iodate is a positive test. Failure to form a precipitate, or the appearance of a brown precipitate which redissolves on shaking, constitutes a negative test. [Pg.1070]

Chlorite ion is oxidized rapidly to chlorine dioxide by ozone at pH 4, yielding one mol CIO2 per mol O3 when chlorite is in excess (k > lO" (39). The oxidation of bromite to bromate by ozone is too rapid to measure. Chlorine dioxide is oxidized rapidly to chlorate. Chlorate, bromate, and iodate ions do not react with ozone. [Pg.492]

Section 16.16 Oxidation of sulfides yields sulfoxides, then sulfones. Sodium metaper-iodate is specific for the oxidation of sulfides to sulfoxides, and no further. Hydrogen peroxide or peroxy acids can yield sulfoxides (1 mole of oxidant per mole of sulfide) or sulfone (2 moles of oxidant per mole of sulfide). [Pg.695]

The saturated solution of potassium iodate in water at 25°C has a molality equal to 0.43. Taking the activity coefficient y in this saturated solution to be 0.52, find the conventional free energy of solution at 25°C, and calculate in electron-volts per ion pair the value of L for the removal of tho ions K+ and (IOs) into water at 25°C. [Pg.216]

Preparation ofpure potassium hydrogeniodate. Dissolve 27 g of potassium iodate in 125 mL of boiling water, and add a solution of 22 g of iodic acid in 45 mL of warm water acidified with six drops of concentrated hydrochloric acid. Potassium hydrogeniodate separates on cooling. Filter on a sintered-glass funnel, and wash with cold water. Recrystallise three times from hot water use 3 parts of water for 1 part of the salt and stir continuously during each cooling. Dry the crystals at 100 °C for several hours. The purity exceeds 99.95 per cent. [Pg.294]

Method A With arsenic(III) oxide. This procedure, which utilises arsenic(III) oxide as a primary standard and potassium iodide or potassium iodate as a catalyst for the reaction, is convenient in practice and is a trustworthy method for the standardisation of permanganate solutions. Analytical grade arsenic(III) oxide has a purity of at least 99.8 per cent, and the results by this method agree to within 1 part in 3000 with the sodium oxalate procedure (Method B, below). [Pg.370]

A) With potassium iodate. Potassium iodate has a purity of at least 99.9 per cent it can be dried at 120 °C. This reacts with potassium iodide in acid solution to liberate iodine ... [Pg.391]

Its relative molecular mass is 214.00 a 0.02M solution therefore contains 4.28 g of potassium iodate per litre. [Pg.391]

Only a small amount of potassium iodate is needed so that the error in weighing 0.14-0.15 g may be appreciable. In this case it is better to weigh out accurately 4.28 g of the salt (if a slightly different weight is used, the exact molarity is calculated), dissolve it in water, and make up to 1 L in a graduated flask. Twenty-five millilitres of this solution are treated with excess of pure potassium iodide (I g of the solid or 10 mL of 10 per cent solution), followed by 3 mL of IM sulphuric acid, and the liberated iodine is titrated as detailed above. [Pg.392]

Procedure (iodometric method). Weigh out accurately about 5.0 g of the bleaching powder into a clean glass mortar. Add a little water, and rub the mixture to a smooth paste. Add a little more water, triturate with the pestle, allow the mixture to settle, and pour off the milky liquid into a 500 mL graduated flask. Grind the residue with a little more water, and repeat the operation until the whole of the sample has been transferred to the flask either in solution or in a state of very fine suspension, and the mortar washed quite clean. The flask is then filled to the mark with distilled water, well shaken, and 50.0 mL of the turbid liquid immediately withdrawn with a pipette. This is transferred to a 250 mL conical flask, 25 mL of water added, followed by 2 g of iodate-free potassium iodide (or 20 mL of a 10 per cent solution) and 10 mL of glacial acetic acid. Titrate the liberated iodine with standard 0.1M sodium thiosulphate. [Pg.397]

Procedure. Weigh out accurately about 2.5 g of finely powdered mercury(II) chloride, and dissolve it in 100 mL of water in a graduated flask. Shake well. Transfer 25.0 mL of the solution to a conical flask, add 25 mL water, 2mL 1M hydrochloric acid, and excess of 50 per cent phosphorous(III) acid solution. Stir thoroughly and allow to stand for 12 hours or more. Filter the precipitated mercury(I) chloride through a quantitative filter paper and wash the precipitate moderately with cold water. Transfer the precipitate with the filter paper quantitatively to a 250 mL reagent bottle, add 30 mL concentrated hydrochloric acid, 20 mL water, and 5 mL carbon tetrachloride or chloroform. Titrate the mixture with standard 0.025M potassium iodate in the usual manner (Section 11.127). [Pg.403]

Soluble sulphides. Hydrogen sulphide and soluble sulphides can also be determined by oxidation with potassium iodate in an alkaline medium. Mix 10.0 mL of the sulphide solution containing about 2.5 mg sulphide with 15.0 mL 0.025M potassium iodate (Section 10.126) and 10 mL of 10M sodium hydroxide. Boil gently for 10 minutes, cool, add 5 mL of 5 per cent potassium iodide solution and 20 mL of 4M sulphuric acid. Titrate the liberated iodine, which is equivalent... [Pg.404]

Discussion. Iodine (or tri-iodide ion Ij" = I2 +1-) is readily generated with 100 per cent efficiency by the oxidation of iodide ion at a platinum anode, and can be used for the coulometric titration of antimony (III). The optimum pH is between 7.5 and 8.5, and a complexing agent (e.g. tartrate ion) must be present to prevent hydrolysis and precipitation of the antimony. In solutions more alkaline than pH of about 8.5, disproportionation of iodine to iodide and iodate(I) (hypoiodite) occurs. The reversible character of the iodine-iodide complex renders equivalence point detection easy by both potentiometric and amperometric techniques for macro titrations, the usual visual detection of the end point with starch is possible. [Pg.541]

Sodium Thiosulfate. A 0.00250 N solution was made by dissolving 0.63 gram of sodium thiosulfate and 0.10 gram of sodium carbonate per liter of freshly boiled water. It was standardized each day against approximately 0.00300 N potassium iodate solution. [Pg.203]

Schnepfe [83] has described yet another procedure for the determination of iodate and total iodine in seawater. To determine total iodine 1 ml of 1% aqueous sulfamic acid is added to 10 ml seawater which, if necessary, is filtered and then adjusted to a pH of less than 2.0. After 15 min, 1 ml sodium hydroxide (0.1 M) and 0.5 ml potassium permanganate (0.1M) are added and the mixture heated on a steam bath for one hour. The cooled solution is filtered and the residue washed. The filtrate and washings are diluted to 16 ml and 1ml of a phosphate solution (0.25 M) added (containing 0.3 xg iodine as iodate per ml) at 0 °C. Then 0.7 ml ferrous chloride (0.1 M) in 0.2% v/v sulfuric acid, 5 ml aqueous sulfuric acid (10%) - phosphoric acid (1 1) are added at 0 °C followed by 2 ml starch-cadmium iodide reagent. The solution is diluted to 25 ml and after 10-15 min the extinction of the starch-iodine complex is measured in a -5 cm cell. To determine iodate the same procedure is followed as is described previously except that the oxidation stage with sodium hydroxide - potassium permanganate is omitted and only 0.2 ml ferrous chloride solution is added. A potassium iodate standard was used in both methods. [Pg.80]

Matthews and Riley [99] preconcentrated iodide by co-precipitation with chloride ions. This is achieved by adding 0.23 g silver nitrate per 500 ml of seawater sample. Treatment of the precipitate with aqueous bromine and ultrasonic agitation promote recovery of iodide as iodate which is caused to react with excess iodide under acid conditions, yielding I3. This is determined either spectrophotometrically or by photometric titration with sodium thiosulfate. Photometric titration gave a recovery of 99.0 0.4% and a coefficient of variation of 0.4% compared with 98.5 0.6% and 0.8%, respectively, for the spectrophotometric procedure. [Pg.82]

Schnepfe [4] has described a method for the determination of total iodine and iodate in seawater. One per cent aqueous sulfamic acid (1 ml) is added to seawater (10 ml), then it is filtered, if necessary, and the pH adjusted to 2. After 15 min, 1 ml 0.1 M sodium hydroxide and 0.5 ml 0.1 M potassium permanganate are added and the steam bath heated for 1 h. The cooled solution is filtered, the residue washed, the filtrate plus washings is diluted to 16 ml and 1 ml of a 0.25 M phosphate solution (containing 0.3 pg iodine as IOj per... [Pg.480]


See other pages where Per-iodates is mentioned: [Pg.199]    [Pg.108]    [Pg.182]    [Pg.88]    [Pg.268]    [Pg.199]    [Pg.108]    [Pg.182]    [Pg.88]    [Pg.268]    [Pg.1042]    [Pg.1195]    [Pg.47]    [Pg.167]    [Pg.371]    [Pg.387]    [Pg.401]    [Pg.402]    [Pg.454]    [Pg.18]    [Pg.21]    [Pg.23]    [Pg.1042]    [Pg.364]    [Pg.1464]    [Pg.117]    [Pg.469]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Iodat

Iodate

Iodates

© 2024 chempedia.info