Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peptide tandem mass spectrometry

A microcapillary trap cartridge-microcapillary high-performance liquid chromatography electrospray ionization emitter device capable of peptide tandem mass spectrometry at the attomole level on an ion trap mass spectrometer with automated routine operation. Rapid Common. Mass Spectrom. 2003, 77(18), 2093-2098. [Pg.344]

Until 1981, mass spectrometry was limited, generally, to the analysis of volatile, relatively low-molecular-mass samples and was difficult to apply to nonvolatile peptides and proteins without first cutting them chemically into smaller volatile segments. During the past decade, the situation has changed radically with the advent of new ionization techniques and the development of tandem mass spectrometry. Now, the mass spectrometer has a well-deserved place in any laboratory interested in the analysis of peptides and proteins. [Pg.287]

However, interpretation of, or even obtaining, the mass spectrum of a peptide can be difficult, and many techniques have been introduced to overcome such difficulties. These techniques include modifying the side chains in the peptide and protecting the N- and C-terminals by special groups. Despite many advances made by these approaches, it is not always easy to read the sequence from the mass spectrum because some amide bond cleavages are less easy than others and give little information. To overcome this problem, tandem mass spectrometry has been applied to this dry approach to peptide sequencing with considerable success. Further, electrospray ionization has been used to determine the molecular masses of proteins and peptides with unprecedented accuracy. [Pg.333]

Tandem mass spectrometry (MS/MS) produces precise structural or sequence information by selective and specific induced fragmentation on samples up to several thousand Daltons. For samples of greater molecular mass than this, an enzyme digest will usually produce several peptides of molecular mass suitable for sequencing by mass spectrometry. The smaller sequences can be used to deduce the sequence of the whole protein. [Pg.417]

Tandem mass spectrometry (MS/MS) is a method for obtaining sequence and structural information by measurement of the mass-to-charge ratios of ionized molecules before and after dissociation reactions within a mass spectrometer which consists essentially of two mass spectrometers in tandem. In the first step, precursor ions are selected for further fragmentation by energy impact and interaction with a collision gas. The generated product ions can be analyzed by a second scan step. MS/MS measurements of peptides can be performed using electrospray or matrix-assisted laser desorption/ionization in combination with triple quadruple, ion trap, quadrupole-TOF (time-of-flight), TOF-TOF or ion cyclotron resonance MS. Tandem... [Pg.1191]

Figure 5.27 Selective detection of lactolated peptides from a tryptic digest of / -lacto-globulins by LC-electrospray-MS-MS, showing (a) the total-ion-cnrrent trace in full-scan mode, and (b) the total-ion-current trace in neutral-loss-scanning mode. Figure from Selective detection of lactolated peptides in hydrolysates by liquid chromatography/ electrospray tandem mass spectrometry , by Molle, D., Morgan, F., BouhaUab, S. and Leonil, J., in Analytical Biochemistry, Volume 259, 152-161, Copyright 1998, Elsevier Science (USA), reproduced with permission from the publisher. Figure 5.27 Selective detection of lactolated peptides from a tryptic digest of / -lacto-globulins by LC-electrospray-MS-MS, showing (a) the total-ion-cnrrent trace in full-scan mode, and (b) the total-ion-current trace in neutral-loss-scanning mode. Figure from Selective detection of lactolated peptides in hydrolysates by liquid chromatography/ electrospray tandem mass spectrometry , by Molle, D., Morgan, F., BouhaUab, S. and Leonil, J., in Analytical Biochemistry, Volume 259, 152-161, Copyright 1998, Elsevier Science (USA), reproduced with permission from the publisher.
Like peptide oligomers, peptoids can be analyzed by HPLC and by mass spectrometry. They can be sequenced by Fdman degradation [13] or by tandem mass spectrometry [14] since, like polypeptides, they conveniently fragment along the main chain amides [15, 16]. [Pg.5]

Complex peptide mixmres can now be analyzed without prior purification by tandem mass spectrometry, which employs the equivalent of two mass spectrometers linked in series. The first spectrometer separates individual peptides based upon their differences in mass. By adjusting the field strength of the first magnet, a single peptide can be directed into the second mass spectrometer, where fragments are generated and their masses determined. As the sensitivity and versatility of mass spectrometry continue to increase, it is displacing Edman sequencers for the direct analysis of protein primary strucmre. [Pg.27]

Davis, M. T., Stahl, D. C., Hefta, S. A., and Lee, T. D., A microscale electrospray interface for on-line, capillary liquid chromatography/tandem mass spectrometry of complex peptide mixtures, Anal. Chem., 67, 4549, 1995. [Pg.96]

Tandem mass spectrometry (MS/MS) is another common approach used for protein identification. In this method, proteins are digested and the resulting peptides are ionized directly from the liquid phase by... [Pg.13]

The major advantage of the tandem mass spectrometry approach compared to MALDI peptide fingerprinting, is that the sequence information obtained from the peptides is more specific for the identification of a protein than simply determining the mass of the peptides. This permits a search of expressed sequence tag nucleotide databases to discover new human genes based upon identification of the protein. This is a useful approach because, by definition, the genes identified actually express a protein. [Pg.14]

Figure 2.5. Tandem mass spectrometry. A. A peptide mixture is electrosprayed into the mass spectrometer. Individual peptides from the mixture are isolated (circled peptide) and fragmented. B. The fragments from the peptide are mass analyzed to obtain sequence information. The fragments obtained are derived from the N or C terminus of the peptide and are designated "b" or "y" ions, respectively. The spectrum shown indicates peptides that differ in size by the amino acids shown. Figure 2.5. Tandem mass spectrometry. A. A peptide mixture is electrosprayed into the mass spectrometer. Individual peptides from the mixture are isolated (circled peptide) and fragmented. B. The fragments from the peptide are mass analyzed to obtain sequence information. The fragments obtained are derived from the N or C terminus of the peptide and are designated "b" or "y" ions, respectively. The spectrum shown indicates peptides that differ in size by the amino acids shown.
Figure 2.6. LC-tandem mass spectrometry to examine complex mixtures. The mixture of many different proteins is digested to yield peptides and the peptides are resolved into fractions hy cation exchange chromatography followed by reverse phase chromatography. The fractionation steps resolve the peptides into fractions that he processed hy tandem mass spectrometry to yield sequence information suitable for database searching. Figure 2.6. LC-tandem mass spectrometry to examine complex mixtures. The mixture of many different proteins is digested to yield peptides and the peptides are resolved into fractions hy cation exchange chromatography followed by reverse phase chromatography. The fractionation steps resolve the peptides into fractions that he processed hy tandem mass spectrometry to yield sequence information suitable for database searching.
One attempt to overcome these disadvantages has been to use multidimensional liquid chromatography (LC) followed directly by tandem mass spectrometry to separate, fragment and identify proteins (Link et al., 1999). In this process, a denatured and reduced protein mixture is digested with a protease to create a collection of peptides (Fig. 2.6). The peptide mixture is applied to a cation exchange column and a fraction of these peptides are eluted based on charge onto a reverse-phase column. The... [Pg.15]

Figure 2.7. Identification ofphosphoproteins by site-specific chemical modification. A. Method of Zhou et al. (2001) involves trypsin digest of complex protein mixture followed by addition of sulfhydryl groups specifically to phosphopeptides. The sulfhydryl group allows capture of the peptide on a bead. Elution of the peptides restores the phosphate and the resulting phosphopeptide is analyzed by tandem mass spectrometry. B. Method of creates a biotin tag in place of the phosphate group. The biotin tag is used for subsequent affinity purification. The purified proteins are proteolyzed and identified by mass spectrometry. Figure 2.7. Identification ofphosphoproteins by site-specific chemical modification. A. Method of Zhou et al. (2001) involves trypsin digest of complex protein mixture followed by addition of sulfhydryl groups specifically to phosphopeptides. The sulfhydryl group allows capture of the peptide on a bead. Elution of the peptides restores the phosphate and the resulting phosphopeptide is analyzed by tandem mass spectrometry. B. Method of creates a biotin tag in place of the phosphate group. The biotin tag is used for subsequent affinity purification. The purified proteins are proteolyzed and identified by mass spectrometry.
Tandem mass spectrometry has become an important tool for determining the sequence of amino acids in protonated peptides98 and the sequence of bases in deprotonated nucleic acids such as DNA.99 Despite the importance and widespread use of CID-MS to sequence peptides and nucleic acids, the mechanistic details of the dissociation processes are poorly understood. A better understanding of the... [Pg.310]

COUPLED MULTIDIMENSIONAL CHROMATOGRAPHY AND TANDEM MASS SPECTROMETRY SYSTEMS FOR COMPLEX PEPTIDE MIXTURE ANALYSIS... [Pg.243]

Cargile, B. J., Stephenson, J.L., Jr. (2004). An alternative to tandem mass spectrometry isoelectric point and accurate mass for the identification of peptides. Anal. Chem. 76, 267-275. [Pg.256]

Qian, W.J., Liu, T., Monroe, M.E., Strittmatter, E.F., Jacobs, J.M., Kangas, L.J., Petritis, K., Camp, D.G., 2nd, Smith, R.D. (2005b). Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis the human proteome. J. Proteome Res. 4, 53-62. [Pg.258]

No tandem MS experiment can be successful if the precursor ions fail to fragment (at the right time and place). The ion activation step is crucial to the experiment and ultimately defines what types of products result. Hence, the ion activation method that is appropriate for a specific application depends on the MS instrument configuration as well as on the analyzed compounds and the structural information that is wanted. Various, more or less complementary, ion activation methods have been developed during the history of tandem MS. Below we give brief descriptions of several of these approaches. A more detailed description of peptide fragmentation mles and nomenclature is provided in Chapter 2. An excellent review of ion activation methods for tandem mass spectrometry is written by Sleno and Volmer, see Reference 12, and for a more detailed review on slow heating methods in tandem MS, see Reference 13. [Pg.97]

J. A. Taylor and R. S. Johnson. Sequence Database Searches via de novo Peptide Sequencing by Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom., 11, no. 9 (1997) 1067-1075. [Pg.220]


See other pages where Peptide tandem mass spectrometry is mentioned: [Pg.292]    [Pg.292]    [Pg.139]    [Pg.1029]    [Pg.223]    [Pg.2]    [Pg.18]    [Pg.18]    [Pg.29]    [Pg.174]    [Pg.266]    [Pg.243]    [Pg.244]    [Pg.245]    [Pg.255]    [Pg.261]    [Pg.368]    [Pg.348]    [Pg.188]    [Pg.88]    [Pg.384]    [Pg.104]    [Pg.181]    [Pg.181]    [Pg.207]    [Pg.41]    [Pg.391]    [Pg.166]   
See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Coupled Multidimensional Chromatography and Tandem Mass Spectrometry Systems for Complex Peptide Mixture Analysis

Mass spectrometry peptide

Mass spectrometry tandem

Peptides sequencing, by tandem mass spectrometry

Tandem mass spectrometry, peptide sequencing

Tandem mass spectrometry, peptide sequencing analysis

Tandem mass spectrometry, peptide sequencing molecules

Tandem spectrometry

© 2024 chempedia.info