Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pauson-Khand synthesis

Mukai, C., Yoshida, T., Sorimachi, M., Odani, A. (2006) Co2(CO)8-Catalyzed Intramolecular Hetero-Pauson-Khand Reaction of Alkynecarbodiimide Synthesis of ( )-Physostigmine. Organic Letters, 8, 83-86. [Pg.197]

The Pauson-Khand reaction is the Co-induced formation of cyclopentenones from ene-ynes and CO. One impressive example of a domino Pauson-Khand process is the synthesis of fenestrane 6/4-15, as reported by Keese and colleagues [278]. The transformation is initiated by a double Grignard reaction of 4-pentynoic acid 6/4-12, followed by protection of the formed tertiary hydroxyl group to give 6/4-13. The Co-induced polycyclization of 6/4-13 led directly to the fenestrane 6/4-15... [Pg.459]

In recent years, many novel MCRs - including Michael addition-initiated three-component domino sequences [10], Knoevenagel/hetero-Diels-Alder-based MCRs [11], radical chain MCRs [12], transition metal-catalyzed Pauson-Khand MCRs [13], as well as Petasis MCRs [14], have been added to the chemisf s armamentarium and successfully applied to all fields of organic synthesis. [Pg.543]

The Pauson-Khand reaction (PKR) [96] consists of the synthesis of cyclopen-tenones by reaction of an alkene with a dicobalthexacarbonyl complexed alkyne (Scheme 57) and has recently emerged as one of the methods of choice for the obtainment of five-membered carbocyclic rings [97]. Its unique atom connectivity, which involves the two unsaturated carbons of the reagents and the carbon atom of a carbon monoxide ligand of cobalt usually in a regioselective manner (Scheme 57), has brought to refer to PKR as a [2 -I- 2 + 1] cycloaddition. [Pg.66]

Currently, these reactions are typically conducted with Rh(l) or Ir catalysts. The Pauson-Khand-type reaction of allenynes has also witnessed important developments, especially in its applications to natural products synthesis.388 Brummond s group has been very productive in both areas. Duality in the reaction of allenynes is shown below. In the context of diversity-oriented synthesis, simply changing the reaction conditions gives versatile heterocycles in high yields (Scheme 116).389... [Pg.357]

For the synthesis of heterocycles, an efficient strategy has been introduced utilizing the dual transition metal sequences (Scheme 6).11,lla The key issue is the compatibility of the two catalyst systems. Jeong et al. studied the one-pot preparation of bicyclopentenone 35 from propargylsulfonamide 33 and allylic acetate.11 This transformation includes two reactions the first palladium-catalyzed allylation of 33 generates an enyne 34 and the following Pauson-Khand type reaction (PKR) of 34 yields a bicyclopentenone 35. The success of this transformation reflects the right combination of catalysts which are compatible with each other because the allylic amination can be facilitated by the electron-rich palladium(O) catalyst and the PKR needs a Lewis-acidic catalyst. Trost et al. reported the one-pot enantioselective... [Pg.699]

A domino Pauson-Khand-Reaction was developed by Keese et al. starting from enediyne 155 leading to the shortest synthesis of a fenestrane 157 (scheme 31).1791... [Pg.59]

Another interesting domino Pauson-Khand reaction was presented by Cook et al. generating six carbon-carbon bonds in a one-pot process in the synthesis of dicydopenta[a,elpentalene derivatives.1801... [Pg.59]

Scheme 31. Synthesis of fenestranes by domino Pauson-Khand reaction... Scheme 31. Synthesis of fenestranes by domino Pauson-Khand reaction...
His present interests include the development of new synthetic methodologies in carbohydrates, free radical chemistry, organometallic chemistry (Pauson-Khand reaction, transition metal (PtCl2, AuCl)-mediated cycloisomerization of polyunsaturated precursors), and synthesis/biologi-cal evaluation of heterocyclic systems (CSIC reaction, tacrine analogs). [Pg.304]

In a similar manner, Brummond et al. demonstrated the first total synthesis of 15-deoxy-A12,14-prostaglandin J2 (162) that was completed using a silicon-tethered allenic Pauson-Khand reaction to obtain the highly unsaturated cyclopentenone substructure [36]. Treatment of alkynylallene 160 with molybdenum hexacarbonyl and dimethyl sulfoxide affords the desired cycloadduct 161 in 43% yield (Scheme 19.30). Trienone 161 was obtained as a 2 1 Z E mixture of isomers in which the Z-isomer could be isomerized to the desired E-isomer. The silicon tether was cleaved and the resulting product converted to 15-deoxy-A12,14-prostaglandin J2 (162). [Pg.1062]

An important procedure for the synthesis of cyclopentenones is the so-called Pauson-Khand reaction, which constitutes a formal [2 + 2 + 1] cycloaddition of an alkene, an alkyne, and carbon monoxide. Due to the increase in structural diversity of the available starting materials, the reaction has become an attractive target for scientific investigations [1-8]. The first successful example was reported by Pauson, Khand et al [9] in 1973 for the conversion of norbornene with the phenylacetylene-hexacarbonyldicobalt complex to give the corresponding cyclopentenone in 45% yield (Eq. 1). [Pg.173]

Recent developments have impressively enlarged the scope of Pauson-Khand reactions. Besides the elaboration of strategies for the enantioselective synthesis of cyclopentenones, it is often possible to perform PKR efficiently with a catalytic amount of a late transition metal complex. In general, different transition metal sources, e.g., Co, Rh, Ir, and Ti, can be applied in these reactions. Actual achievements demonstrate the possibility of replacing external carbon monoxide by transfer carbonylations. This procedure will surely encourage synthetic chemists to use the potential of the PKR more often in organic synthesis. However, apart from academic research, industrial applications of this methodology are still awaited. [Pg.183]

An enantioselective intramolecular Pauson-Khand reaction based on chiral auxiliary-directed 7t-face discrimination in acetylenic 0-alkyl enol ether-dicobalt hexacarbonyl complexes, which proceeds with good yields and high facial diastereoselectivity, has recently been developed by M.A. Pericas, A. Moyano, A.E. Greene and their associates. The method has been applied to an enantioselective formal synthesis of hirsutene. Moreover, the process is stereodivergent and the chiral auxiliary -rran5-2-phenylcyclohexanol- is recovered in a yield as high as 92% [18]. [Pg.164]

Transition-metal-promoted cycloaddition is of much interest as a powerful tool for synthesis of carbocyclic stmcture in a single step. Utilization of carbon monoxide as a component of the cycloaddition reaction is now widely known as the Pauson-Khand reaction, which results in cyclopentenone formation starting from an alkyne, an alkene, and carbon monoxide mediated by cobalt catalyst. Although mechanistic understanding is limited, a commonly accepted mechanism is shown in Scheme 4.16. Formation of dicobalt-alkyne complex followed by alkene... [Pg.115]

Schore NE (1991) Org React 40 1 Schore NE (1991) The Pauson-Khand reaction. In Trost BM (ed) Comprehensive organic synthesis, vol 5. Pergamon Press, Oxford, p 1037 Pauson PL (1985) Tetrahedron 41 5855 Schore NE (1995) Transition metal alkyne complexes Pauson-Khand reaction. In Abel EW, Stone EGA, Wilkinson G (eds) Comprehensive organometallic chemistry II, vol 12. Pergamon Press, Oxford, p 703 Iwasawa N (1992) Chem Lett 473... [Pg.87]

Based on previous success in the Pauson-Khand reaction [43], Evans demonstrated a sequential approach to the synthesis of eight-membered rings, which involved a rhodium-catalyzed aUyhc amination reaction followed by carbocyclization, to effect a three-component couphng (Scheme 12.11). To date, this transformation is only the second example of a sequential rhodium-catalyzed reaction in which only temperature is used to modulate catalytic activity. [Pg.259]

Diels-Alder, imino dienophiles, 65, 2 Diels-Alder, intramolecular, 32, 1 Diels-Alder, maleic anhydride, 4, 1 [4 -h 3], 51, 3 of enones, 44, 2 of ketenes, 45, 2 of nitrones and alkenes, 36, 1 Pauson-Khand, 40, 1 photochemical, 44, 2 retro-Diels-Alder reaction, 52, 1 53, 2 [6-h4], 49, 2 [3-h2], 61, 1 Cyclobutanes, synthesis ... [Pg.587]

Passerini Reaction, 65, 1 Pauson-Khand reaction to prepare cyclopentenones, 40, 1 Payne rearrangement, 60, 1 Pechmann reaction, 7, 1 Peptides, synthesis of, 3, 5 12, 4 Peracids, epoxidation and hydroxylation with, 7, 7... [Pg.592]

Scheme 1.3.28 Asymmetric synthesis of bicyclic amino acids via Pauson-Khand cycloaddition of vinyl sulfoximines. Scheme 1.3.28 Asymmetric synthesis of bicyclic amino acids via Pauson-Khand cycloaddition of vinyl sulfoximines.
Bolton, G. L. Solid Phase Synthesis of Azabicyclo[4.3.0]nonen-8-one Amino Acid Derivatives via Intramolecular Pauson-Khand Cyclisation, Tetrahedron Lett. 1996, 37, 3433—3436. [Pg.74]

An application of the Pauson-Khand reaction for the synthesis of a carbaprostacyclin analogue (Scheme 11) [44] illustrates the power of organometallic methods for the activation of olefins and acetylenes. [Pg.556]

The [2+2+1] cycloaddition of an alkene, an alkyne and carbon monoxide is commonly known as the Pauson-Khand reaction. This transformation has been adopted many times in the synthesis of complex natural products and related compounds, which contain a cyclopentenone moiety, for example, prostaglandins. Two independent reports of this reaction appeared almost simultaneously in late 2002 by Iqbal and co-workers25 and Fisher and co-workers26, respectively. They not only used very similar substrate systems in their studies, but they also reached very similar conclusions Toluene was found to be the preferred solvent in this reaction, even though it is a very poor microwave absorber. A reaction time between 5 and 10 min, using dicob alto ctacar-bonyl or dicobalthexacarbonyl as the carbon monoxide source, and a temperature of 100-120°C resulted in high yields of the products. Fisher and co-workers used 20 mol% Co2(CO)8 and cyclohexylamine as an additive (Scheme 5.12), since this system had been used previously in order to allow a catalytic reaction. Iqbal and co-workers did not use cyclohexylamine, but instead used 1 equiv. of the carbon monoxide (Co2(CO)6) source. In both reports, the products were formed in 40-70% yield. [Pg.112]


See other pages where Pauson-Khand synthesis is mentioned: [Pg.148]    [Pg.148]    [Pg.114]    [Pg.242]    [Pg.460]    [Pg.420]    [Pg.324]    [Pg.278]    [Pg.32]    [Pg.515]    [Pg.517]    [Pg.376]    [Pg.1062]    [Pg.7]    [Pg.120]    [Pg.284]    [Pg.448]    [Pg.71]    [Pg.658]    [Pg.106]    [Pg.567]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



Cyclopentenone synthesis Pauson-Khand reaction

Khand

Pauson

Pauson-Khand

Pauson-Khand cyclopentenone synthesis

Triquinanes synthesis via Pauson-Khand reaction

© 2024 chempedia.info