Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivity Tafel equation

Initially, the curve conforms to the Tafel equation and curve AB which is referred to as the active region, corresponds with the reaction Fe- Fe (aq). At B there is a departure from linearity that b omes more pronounced ns the potential is increased, and at a potential C the current decreases to a very small value. The current density and potential at which the transition occurs are referred to as the critical current density, and the passivation potential Fpp, respectively. In this connection it should be noted that whereas is determined from the active to passive transition, the Flade potential Ef is determined from the passive to active transition... [Pg.107]

The critical passivation current density is calculated by subtituting the anodic current density, 4, with and the anodic potential, E, with Epp in Tafel equation ... [Pg.8]

The Tafel equation applied to two points [log(Corr), Tcorr] and [log(fcrit), Epp] is used to calculate the critical passivation current density ... [Pg.672]

The polarization curve (Fig. E4.8) for alloys A, B, C, and D is constructed using the electrochemical parameters given in the table. Alloy D does not exhibit passivation. The polarization curve for this alloy is constructed using the Tafel equation by taking Ceq= — 0.2 V vs. SCE. [Pg.678]

Figure 3. Mixed potential diagram illustrating controls on the kinetics of corrosion at a pitted, oxide-covered metal. The potential range is from -700 to +300 mV/NHE. Arrows (B) corrosion current at the bottom of the pit, controlled by Fe Fe + (acid) and 2H - H2 (M) corrosion current at the mouth of the pit, controlled by the partial currents for Fe -> Fe2+ (passivated) and RX RH (Pit) corrosion current for the short-circuited pit, controlled by Fe Fe + (acid) and RX - RH. The three solid curves are generated using the Tafel equation and exchange current densities and Tafel slopes from reference (9). The dashed curve was measured at 5 mV s in pH 8.4 borate buffer, using methods described in reference (9). Figure 3. Mixed potential diagram illustrating controls on the kinetics of corrosion at a pitted, oxide-covered metal. The potential range is from -700 to +300 mV/NHE. Arrows (B) corrosion current at the bottom of the pit, controlled by Fe Fe + (acid) and 2H - H2 (M) corrosion current at the mouth of the pit, controlled by the partial currents for Fe -> Fe2+ (passivated) and RX RH (Pit) corrosion current for the short-circuited pit, controlled by Fe Fe + (acid) and RX - RH. The three solid curves are generated using the Tafel equation and exchange current densities and Tafel slopes from reference (9). The dashed curve was measured at 5 mV s in pH 8.4 borate buffer, using methods described in reference (9).
EIS is the response of corrosion systems to ac excitations. It has been used in corrosion research to estimate corrosion rates or study the metal passivation, corrosion protection using inhibitors, sacrificial barrier properties, and polymer coating performance on metals. EIS only estimates polarization resistance. As with Hnear polarization, the corrosion current is calculated using the Stem-Geary equation for known values of the anodic and cathodic Tafel slopes. [Pg.26]

Solution pH, velocity, and oxidizer concentration change the properties of the anodic curve of the active-passive metal. For example, the equilibrium potential of the cathodic reaction shifts according to the Nemst equation in the noble direction by increasing the oxidizer concentration. Mixed potential theory, in this case, may predict the intersection of the cathodic and anodic Tafel fines and corrosion rate or extent of passivation of the metal. [Pg.154]

The surface films discussed in this section reach a steady state when they are thick enough to stop electron transport. Hence, as the surface films become electrically insulating, the active electrodes reach passivation. In the case of monovalent ions such as lithium, the surface films formed in Li salt solutions (or on Li metal) can conduct Li-ions, and hence, behave in general as a solid electrolyte interphase (the SEI model ). See the basic equations 1-7 related to ion transport through surface films in section la above. The potentiodynamics of SEI electrodes such as Li or Li-C may be characterized by a Tafel-like behavior at a high electrical field and by an Ohmic behavior at the low electrical field. The non-uniform structure of the surface films leads to a non-uniform current distribution, and thereby, Li dissolution from Li electrodes may be characterized by cracks, and Li deposition may be dendritic. The morphology of these processes, directed by the surface films, is dealt with later in this chapter. When bivalent active metals are involved, their surface films cannot conduct the bivalent ions. Thereby, Mg or Ca deposition is impossible in most of the commonly used polar aprotic electrolyte solutions. Mg or Ca dissolution occurs at very high over potentials in which the surface films are broken. Hence, dissolution of multivalent active metals occurs via a breakdown and repair of the surface films. [Pg.93]

Because the metal dissolution is an anodic process, for example, Fe(s) Fe +(aq) + 2e , the current of the process is assumed to be positive. When potential increases from Mez+zMe lo f (passivation or Flade potential), the current is increasing exponentially due to the electron transfer reaction, for example, Fe(s) -> Fe +(aq) + 2e", and can be described using Tafel s equation. At a E the formation of an oxide layer (passive film) starts. When the metal surface is covered by a metal oxide passive film (an insulator or a semiconductor), the resistivity is sharply increasing, and the current density drops down to the rest current density, 7r. This low current corresponds to a slow growth of the oxide layer, and possible dissolution of the metal oxide into solution. In the region of transpassivation, another electrochemical reaction can take place, for example, H20(l) (l/2)02(g) + 2H+(aq) + 2e, or the passive film can be broken down due to a chemical interaction with environment and mechanical instability. Clearly, a three-electrode cell and a potentiostat should be used to obtain the current density-potential curve shown in Figure 9.3. [Pg.178]


See other pages where Passivity Tafel equation is mentioned: [Pg.119]    [Pg.159]    [Pg.670]    [Pg.152]    [Pg.781]    [Pg.225]    [Pg.138]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Tafel

© 2024 chempedia.info