Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passive hydrolysis

Passive hydrolysis. Esters, carbonates, amides and urethanes are susceptible to hydrolysis. Drugs linked with the spacer via such bonds will be released in aqueous media. The rate of release will decrease in the order ester > carbonate > urethane > amide. Cleavage may also occur at the level of the spacer-backbone bond so that spacer-drug moieties can be released as well. [Pg.591]

THE CHEMICAL DEGRADATION OF BIODEGRADABLE POLYMERS Factors Affecting the Velocity of Passive Hydrolysis The Type of Chemical Bond... [Pg.455]

Anotlier important modification metliod is tire passivation of tire external crystallite surface, which may improve perfonnance in shape selective catalysis (see C2.12.7). Treatment of zeolites witli alkoxysilanes, SiCl or silane, and subsequent hydrolysis or poisoning witli bulky bases, organophosphoms compounds and arylsilanes have been used for tliis purjDose [39]. In some cases, tire improved perfonnance was, however, not related to tire masking of unselective active sites on tire outer surface but ratlier to a narrowing of tire pore diameters due to silica deposits. [Pg.2786]

Active Transport. Maintenance of the appropriate concentrations of K" and Na" in the intra- and extracellular fluids involves active transport, ie, a process requiring energy (53). Sodium ion in the extracellular fluid (0.136—0.145 AfNa" ) diffuses passively and continuously into the intracellular fluid (<0.01 M Na" ) and must be removed. This sodium ion is pumped from the intracellular to the extracellular fluid, while K" is pumped from the extracellular (ca 0.004 M K" ) to the intracellular fluid (ca 0.14 M K" ) (53—55). The energy for these processes is provided by hydrolysis of adenosine triphosphate (ATP) and requires the enzyme Na" -K" ATPase, a membrane-bound enzyme which is widely distributed in the body. In some cells, eg, brain and kidney, 60—70 wt % of the ATP is used to maintain the required Na" -K" distribution. [Pg.380]

Reaction of 2-aminoquinoline derivatives with BrCH2C0C02Et gave imidazoquinoline-2-carboxylate 473 which upon hydrolysis with sodium hydroxide gave the corresponding acid which had been tested against the passive cutaneous anaphylaxis (78GEP2802493, 78BEP858605) (Scheme 79). [Pg.133]

Figure 4.34 illustrates, by means of potential/anodic current density curves, the influence of pH and Cl ions on the pitting of nickel The tendency to pit is associated with the potential at which a sudden increase in anodic current density is observed within the normally passive range ( b on Curve 1 in Fig. 4.34). It can be seen that in neutral 0-05 M Na2S04 containing 0-02m Cl" (Curve 1) has a value of approximately 0-4 V h- When pitting develops, the solution in the pits becomes acidic owing to hydrolysis of the corrosion product (see Section 1.6) and when this occurs the anodic current density increases by at least two orders of magnitude and tends to follow the curve obtained in 0 05 m H2SO4-t-0-02 m NaCl (Curve 2). Comparison of Curves 2 and 3 illustrates the influence of Cl" ions on the pitting process. Figure 4.34 illustrates, by means of potential/anodic current density curves, the influence of pH and Cl ions on the pitting of nickel The tendency to pit is associated with the potential at which a sudden increase in anodic current density is observed within the normally passive range ( b on Curve 1 in Fig. 4.34). It can be seen that in neutral 0-05 M Na2S04 containing 0-02m Cl" (Curve 1) has a value of approximately 0-4 V h- When pitting develops, the solution in the pits becomes acidic owing to hydrolysis of the corrosion product (see Section 1.6) and when this occurs the anodic current density increases by at least two orders of magnitude and tends to follow the curve obtained in 0 05 m H2SO4-t-0-02 m NaCl (Curve 2). Comparison of Curves 2 and 3 illustrates the influence of Cl" ions on the pitting process.
The assessment of clearance is complicated by the numerous mechanisms by which compounds may be cleared from the body. These mechanisms include oxidative metabolism, most commonly by CYP enzymes, but also in some cases by other enzymes including but not limited to monoamine oxidases (MAO), flavin-containing monooxygenases (FMO), and aldehyde oxidase [45, 46], Non-oxidative metabolism such as conjugation or hydrolysis may be effected by enzymes such as glucuronyl transferases (UGT), glutathione transferases (GST), amidases, esterases, or ketone reductases, as well as other enzymes [47, 48], In addition to metabolic pathways, parent compound may be excreted directly via passive or active transport processes, most commonly into the urine or bile. [Pg.155]

Sonication of 0.05 M Hg2(N03)2 solution for 10,20 and 30 min and the simultaneous measurements of conductivity, temperature change and turbidity (Table 9.2) indicated a rise in the turbidity due to the formation of an insoluble precipitate. This could probably be due to the formation of Hg2(OH)2, as a consequence of hydrolysis, along with Hg free radical and Hg° particles which could be responsible for increase in the turbidity after sonication. The turbidity increased further with time. Mobility of NO3 ions was more or less restricted due to resonance in this ion, which helped, in the smooth and uniform distribution of charge density over NO3 ion surface. Hence the contribution of NOJ ion towards the electrical conductance was perhaps much too less than the conduction of cationic species with which it was associated in the molecular (compound) form. Since in case of Hg2(N03)2, Hg2(OH)2 species were being formed which also destroyed the cationic nature of Hg22+, therefore a decrease in the electrical conductance of solution could be predicted. The simultaneous passivity of its anionic part did not increase the conductivity due to rise in temperature as anticipated and could be seen through the Table 9.2. These observations could now be summarized in reaction steps as under ... [Pg.225]

A comparison of the products of AP hydrolysis of HQDP (HQ), PP, and 1-NP using cyclic voltammetry revealed that HQ produced well-defined peaks, and that the oxidation of HQ is reversible. More importantly, no apparent passivation of the electrode surface was observed even at high millimolar concentrations after 50 scans. Following a series of investigations, this non-fouling nature of HQ was attributed to the non-accumulation of its oxidation products on the electrode surface and the good diffusional properties of HQ at the electrode-solution interface. Another positive feature of HQDP as a substrate for AP is a tenfold greater oxidation current response of HQ compared to those obtained in the presence of PP or 1-NP. Overall, HQDP provides a suitable and attractive alternative substrate system for AP in the development of amperometric immunosensors. [Pg.156]


See other pages where Passive hydrolysis is mentioned: [Pg.591]    [Pg.460]    [Pg.159]    [Pg.591]    [Pg.460]    [Pg.159]    [Pg.477]    [Pg.57]    [Pg.179]    [Pg.301]    [Pg.892]    [Pg.28]    [Pg.122]    [Pg.146]    [Pg.163]    [Pg.167]    [Pg.168]    [Pg.186]    [Pg.545]    [Pg.1237]    [Pg.1264]    [Pg.466]    [Pg.494]    [Pg.68]    [Pg.188]    [Pg.67]    [Pg.165]    [Pg.18]    [Pg.479]    [Pg.892]    [Pg.156]    [Pg.229]    [Pg.453]    [Pg.281]    [Pg.131]    [Pg.7]    [Pg.158]    [Pg.342]    [Pg.182]    [Pg.183]    [Pg.244]    [Pg.35]    [Pg.249]    [Pg.563]   
See also in sourсe #XX -- [ Pg.591 ]




SEARCH



© 2024 chempedia.info