Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passive films adsorption theory

There are various theories on how passive films are formed however, there are two commonly accepted theories. One theory is called the oxide film theory and states that the passive film is a diffusion-barrier layer of reaction products (i.e., metal oxides or other compounds). The barriers separate the metal from the hostile environment and thereby slow the rate of reaction. Another theory is the adsorption theory of passivity. This states that the film is simply adsorbed gas that forms a barrier to diffusion of metal ions from the substrata. [Pg.1268]

In view of the fact that there are two opposing views on the mechanism of passivity it is not surprising that a similar situation prevails concerning the mechanism of breakdown of passivity. The solid film theory of passivity and breakdown of passivity is dealt with in some detail in Section 1.5, so that it is appropriate here to discuss briefly the views based on the adsorption theory. [Pg.181]

In the potential region where nonequilibrium fluctuations are kept stable, subsequent pitting dissolution of the metal is kept to a minimum. In this case, the passive metal apparently can be treated as an ideally polarized electrode. Then, the passive film is thought to repeat more or less stochastically, rupturing and repairing all over the surface. So it can be assumed that the passive film itself (at least at the initial stage of dissolution) behaves just like an adsorption film dynamically formed by adsorbants. This assumption allows us to employ the usual double-layer theory including a diffuse layer and a Helmholtz layer. [Pg.258]

In this respect and regarding the discussion on the initial passivations, as pointed out by an increasing number of writers, the oxide-film and adsorption theories do not contradict but rather supplement one another. In looking at the primary act of passivation as the formation of a tightly held monolayer containing oxide or hydroxide anions and metal... [Pg.165]

Chapter 4 presents the fundamentals of passivity the film and adsorption theories of passivity criterion for passivation methods for spontaneous passivation factors affecting passivation, such as the effect of solution velocity and acid concentration alloy evaluation anodic protection systems and design requirements. A fuU discussion on stainless steel composition and crystalline structure, oxidizer concentration, and alloy evaluation is included. The chapter also considers anodic protection to establish a basis for anodic... [Pg.780]

The adsorption theory emphasizes that the observed Flade potential of passive iron is too noble by about 0.6 V to be explained by any of the known iron oxides in equilibrium with iron. Observed values of the Flade potential are consistent with a chemisorbed film of oxygen on the surface of iron, the corresponding potential of which is calculated (see Problem 2 in Chapter 6) using the observed heat and estimated entropy of adsorption of oxygen on iron in accord with the reaction [21]... [Pg.93]

According to the adsorption theory, passivity of chromium and the stainless steels, because of their pronounced affinity for oxygen, can occur by direct chemisorption of oxygen from the air or from aqueous solutions, and the equivalents of oxygen so adsorbed were found [22] to be of the same order of magnitude as the equivalents of passive film formed on iron when passivated either anodically, by concentrated nitric acid, or by exposure to chromates. Similarly, oxygen in air can adsorb directly on iron and passivate it in aerated alkaline solutions, or also in near-neutral solutions if the partial pressure of oxygen is increased sufficiently. [Pg.94]

The structure of the passive film on alloys, as with passive films in general, has been described both by the oxide-film theory and by the adsorption theory. It has been suggested that protective oxide films form above the critical alloy composition for passivity, but nonprotective oxide films form below the critical composition. The preferential oxidation of passive constituents (e.g., chromium) may form protective oxides (e.g., Cr203) above a specific alloy content, but not below. No quantitative predictions have been offered based on this point of view, and the fact that the passive film on stainless steels can be reduced cathodically, but not stoichiometric Cr203 itself, remains unexplained. [Pg.102]

While thick film passivity has been documented and understood for many years, the difficulties in studying thin film passivity were daunting. It took many years to determine that indeed a film was responsible for the effect, as these films are so thin that they are invisible to the eye (i.e., transparent to radiation in the visible region). Two main types of theories were developed in order to explain the phenomena observed theories based upon the idea of adsorption reducing the corrosion rate, and theories based upon the formation of a new phase, an oxide of the base metal, on the surface. In all cases, an increased barrier to dissolution results upon the increase in potential. This increased kinetic barrier upon anodic polarization contrasts with the exponentially decreased barrier which develops during anodic polarization of an active material. [Pg.60]

The precise mechanism resppnsible for the passivity conferred on metals by anodic inhibitors, such as chromate, is not known. While some early workers thought that a protective salt film (e.g., chromate) was formed, this view is not generally applicable, since passivity can occur in a system where the salt film would be freely soluble (e.g., iron in nitric acid). It is, however, generally accepted that passivity is associated with the formation of a protective film, and current views ascribe the action of anodic inhibitors either to adsorption at anodic sites or to continuous repair of the protective film. The former view has received attention in recent publications by Cartledge ), while the latter is favored by Evans (2). However, work on aluminum has suggested that true passivity is associated with the crystal structure of the film, which in turn determines its stability. This principle has recently been introduced by one of the authors (3) and is developed below into a general theory of passivity. [Pg.393]


See other pages where Passive films adsorption theory is mentioned: [Pg.99]    [Pg.99]    [Pg.165]    [Pg.1188]    [Pg.143]    [Pg.150]    [Pg.150]    [Pg.151]    [Pg.124]    [Pg.1217]    [Pg.92]    [Pg.93]    [Pg.102]    [Pg.108]    [Pg.159]    [Pg.444]    [Pg.56]    [Pg.281]    [Pg.316]    [Pg.388]   
See also in sourсe #XX -- [ Pg.20 , Pg.26 , Pg.181 ]

See also in sourсe #XX -- [ Pg.20 , Pg.26 , Pg.181 ]




SEARCH



Adsorption theory

Adsorptive theory

Film theory

Films, adsorption

Passivating films

Passivation films

Passivators theory

Passive films

Passivity adsorption

Passivity passive films

© 2024 chempedia.info