Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle size reduction, transport

Particle Size Reduction. Changes in the physical characteristics of a biomass feedstock often are requited before it can be used as a fuel. Particle size reduction (qv) is performed to prepare the material for direct fuel use, for fabrication into fuel pellets, or for a conversion process. Particle size of the biomass also is reduced to reduce its storage volume, to transport the material as a slurry or pneumatically, or to faciHtate separation of the components. [Pg.16]

Photochemical decomposition can also be carried out in the presence of a suspension of photoactive material such as Ti02 where substrate absorption onto the uv activated surface can initiate chemical reactions e. g. the oxidation of sulphides to sul-phones and sulphoxides [37]. This technology has been adapted to the destruction of polychlorobiphenyls (PCB s) in wastewater and is of considerable interest in environmental protection. Using pentachlorophenol as a model substrate in the presence of 0.2 % TiOj uv irradiation is relatively efficient in dechlorination (Tab. 4.5) [38]. When ultrasound is used in conjunction with photolysis, dechlorination is dramatically improved. This improvement is the result of three mechanical effects of sonochemistry namely surface cleaning, particle size reduction and increased mass transport to the powder surface. [Pg.142]

Irrespective of all uncertainties it seems clear that a particle size reduction down to some tens of a nanometer leads to a quick lithium infiltration provided the lithium (Li and e ] has been transported rapidly to the particle surface (and provided the transfer reaction is quick enough]. Hence it is the network addressing these small particles and for high currents the Li transfer resistance which become decisive for the performance of the electrode. The second half of the contribution is devoted to exactly this theme. [Pg.281]

Reduction of particle size increases the total specific surface area exposed to the solvent, allowing a greater number of particles to dissolve more rapidly. Furthermore, smaller particles have a small diffusion boundary layer, allowing faster transport of dissolved material from the particle surface [58]. These effects become extremely important when dealing with poorly water-soluble drugs, where dissolution is the rate-limiting step in absorption. There are numerous examples where reduction of particle size in such drugs leads to a faster dissolution rate [59-61], In some cases, these in vitro results have been shown to correlate with improved absorption in vivo [62-64]. [Pg.179]

The influence of various gas pressure conditions within the laser ablation cell on the particle formation process in laser ablation has also been investigated.69 In LA-ICP-MS studies at low pressure (down to 2kPa) a small particle size distribution and a reduction in elemental fractionation effects was obtained. But with decreasing pressure and transport volume of ablated material, a significant decrease in the ion intensities was observed as demonstrated for uranium measurements in the glass SRM NIST 610.69 However, the laser ablation of solid materials at atmospheric pressure in LA-ICP-MS is advantageous for routine measurements due to lower experimental effort and the possibility of fast sample changing in the ablation chamber. Fractionation... [Pg.41]

Particle mixing is caused by the bubbles, partly be shear displacement or drift but also by the bulk transport of particles in the bubble wake. Bubbles may also cause segregation if there are different kinds of particles present. Unlike other kinds of mixers, segregation is insensitive to particle size difference but particularly sensitive to density difference. In a binary system of particles segregation increases approximately as particle density ratio to the power 5/2 but with particle size ratio only to the power 1/5 (11). This can cause problems in, for example, coal combustion where char has a markedly lower density than ash and also in some ore reduction processes using coke. [Pg.61]

Two effects cause the low production capacity of large-grained catalyst. First, large grain size retards transport of the ammonia formed inside the catalyst into the bulk gas stream. This is because the ammonia transport proceeds by slow diffusion through the pore system. The second effect is a consequence of the fact that a single catalyst grain in the oxide state reduces from the outside to the interior of the particle. The water vapor produced inside the catalyst by reduction comes into contact with already reduced catalyst on its way to the outer surface of the catalyst. This induces a severe recrystallization. As an example, if the particle size increases from about 1 to 8 mm, the inner surface decreases from 11 to 16 m2/g to 3 to 8 m2/g74. Therefore the choice of catalyst requires the optimization of 1) catalyst size versus catalyst activity, 2) catalyst size versus pressure drop across the converter and 3) the impact of 1 and 2 on... [Pg.172]

Studies with porous catalyst particles conducted during the late 1930s established that, for very rapid reactions, the activity of a catalyst per unit volume declined with increasing particle size. Mathematical analysis of this problem revealed the cause to be insufficient intraparticle mass transfer. The engineering implications of the interaction between diffusional mass transport and reaction rate were pointed out concurrently by Damkohler [4], Zeldovich [5], and Thiele [6]. Thiele, in particular, demonstrated that the fractional reduction in catalyst particle activity due to intraparticle mass transfer, r, is a function of a dimensionless parameter, 0, now known as the Thiele parameter. [Pg.206]

Modifications of user properties have various origins. First, the process of size reduction itself may change the shape of the particles. Some properties, like taste, are sometimes directly induced by the particle size at the bio-sensor s scale. For example, it is now widely known that the gustative quality of chocolate is related to particle size. Another direct consequence of size reduction is an increase of the external specific surface area, that is widely used to enhance the rate of transport phenomena, for example in the case of dissolutions or in fluid/solid extractions. For a given particle size distribution, powder properties may be a consequence of the particles shape. [Pg.345]

The mobility of uranium in soil and its vertical transport (leaching) to groundwater depend on properties of the soil such as pH, oxidation-reduction potential, concentration of complexing anions, porosity of the soil, soil particle size, and sorption properties, as well as the amount of water available (Allard et al. [Pg.288]

Reduction in physical size is often required before biomass is used as a fuel or feedstock. Size-reduction techniques are employed to prepare biomass for direct fuel use, fabrication into fuel pellets, cubes, and briquettes, or conversion. Smaller particles and pieces of biomass reduce its storage volume, facilitate handling of the material in the solid state and transport of the material as a slurry or pneumatically, and sometimes permit ready separation of components such as bark and whitewood. The size of the pieces or particles can be critical when drying is used because the exposed surface area, which is a function of physical size, can determine drying time and the methods and conditions needed to remove moisture. There are a few exceptions where size reduction is not needed, such as in whole-tree burning. [Pg.173]

Electrocatalysts One of the positive features of the supported electrocatalyst is that stable particle sizes in PAFCs and PEMFCs of the order of 2-3 nm can be achieved. These particles are in contact with the electrolyte, and since mass transport of the reactants occurs by spherical diffusion of low concentrations of the fuel-cell reactants (hydrogen and oxygen) through the electrolyte to the ultrafine electrocatalyst particles, the problems connected with diffusional limiting currents are minimized. There has to be good contact between the electrocatalyst particles and the carbon support to minimize ohmic losses and between the supported electrocatalysts and the electrolyte for the proton transport to the electrocatalyst particles and for the subsequent oxygen reduction reaction. This electrolyte network, in contact with the supported electrocatalyst in the active layer of the electrodes, has to be continuous up to the interface of the active layer with the electrolyte layer to minimize ohmic losses. [Pg.533]

Bulk (batch) Simpler equipment No diluent impurities May require solution and subsequent precipitation for purification and/or fabrication May require reduction to usable particle size Broad molecular weight distribution Inefficient heat and mass transport at higher conversion... [Pg.1064]

Temperature. Temperature influences the rate of all reactions occurring during reduction, hence the dynamic humidity and partial pressure of the volatile [W02(OH)2] which forms during reduction and which is responsible for the chemical vapor transport (CVT) of tungsten. Temperature and tungsten particle size are directly proportional while temperature and time required for final reduction are inversely proportional. [Pg.217]

Transport size reduction. As mentioned earlier, the monomer droplets serve as a reservoir for supplying oil-soluble components to the reaction site in the particles. Thermodynamic driving forces will cause diffusion of such components from the droplets to the particles. Such transport will take place even if the droplets contain polymer or other water-insoluble components. In such cases, however, the diffusion transport will stop before the droplets disappear, and the droplets, greatly reduced in size, will be a part of the final particle population. [Pg.134]

Wall-to-Bed Heat Transfer. The wall-to-bed heat transfer coefficient increases with an increase in liquid flow rate, or equivalently, bed voidage. This behavior is due to the reduction in the limiting boundary layer thickness that controls the heat transport as the liquid velocity increases. Patel and Simpson [94] studied the dependence of heat transfer coefficient on particle size and bed voidage for particulate and aggregative fluidized beds. They found that the heat transfer increased with increasing particle size, confirming that particle convection was relatively unimportant and eddy convection was the principal mechanism of heat transfer. They observed characteristic maxima in heat transfer coefficients at voidages near 0.7 for both the systems. [Pg.916]


See other pages where Particle size reduction, transport is mentioned: [Pg.54]    [Pg.105]    [Pg.313]    [Pg.210]    [Pg.335]    [Pg.144]    [Pg.261]    [Pg.4]    [Pg.518]    [Pg.193]    [Pg.320]    [Pg.114]    [Pg.33]    [Pg.287]    [Pg.504]    [Pg.214]    [Pg.220]    [Pg.28]    [Pg.364]    [Pg.232]    [Pg.572]    [Pg.401]    [Pg.2]    [Pg.470]    [Pg.935]    [Pg.430]    [Pg.535]    [Pg.460]    [Pg.70]    [Pg.19]   


SEARCH



Particle size reduction

Particle transport

Particles reduction

Size reduction

© 2024 chempedia.info