Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle size activated alumina

The large majority of activated alumina products are derived from activation of aluminum hydroxide, rehydrated alumina, or pseudoboehmite gel. Other commerical methods to produce specialty activated aluminas are roasting of aluminum chloride [7446-70-0], AIQ calcination of precursors such as ammonium alum [7784-25-0], AlH2NOgS2. Processing is tailored to optimize one or more of the product properties such as surface area, purity, pore size distribution, particle size, shape, or strength. [Pg.155]

Rehydration Bonded Alumina. Rehydration bonded aluminas are agglomerates of activated alumina, which derive their strength from the rehydration bonding mechanism. Because more processing steps are involved in the manufacture, they are generally more expensive than activated aluminum hydroxides. On the other hand, rehydration bonded aluminas can be produced in a wider range of particle shape, surface area, and pore size distribution. [Pg.155]

In particular, emphasis will be placed on the use of chemisorption to measure the metal dispersion, metal area, or particle size of catalytically active metals supported on nonreducible oxides such as the refractory oxides, silica, alumina, silica-alumina, and zeolites. In contrast to physical adsorption, there are no complete books devoted to this aspect of catalyst characterization however, there is a chapter in Anderson that discusses the subject. [Pg.740]

Besides supported (transition) metal catalysts, structure sensitivity can also be observed with bare (oxidic) support materials, too. In 2003, Hinrichsen et al. [39] investigated methanol synthesis at 30 bar and 300 °C over differently prepared zinc oxides, namely by precipitation, coprecipitation with alumina, and thermolysis of zinc siloxide precursor. Particle sizes, as determined by N2 physisorpt-ion and XRD, varied from 261 nm for a commercial material to 7.0 nm for the thermolytically obtained material. Plotting the areal rates against BET surface areas (Figure 3) reveals enhanced activity for the low surface area zinc... [Pg.169]

Catalysts - A commercial Raney nickel (RNi-C) and a laboratory Raney nickel (RNi-L) were used in this study. RNi-C was supplied in an aqueous suspension (pH < 10.5, A1 < 7 wt %, particle size 0.012-0.128 mm). Prior to the activity test, RNi-C catalyst (2 g wet, 1.4 g dry, aqueous suspension) was washed three times with ethanol (20 ml) and twice with cyclohexane (CH) (20 mL) in order to remove water from the catalyst. RCN was then exchanged for the cyclohexane and the catalyst sample was introduced into the reactor as a suspension in the substrate. RNi-L catalyst was prepared from a 50 % Ni-50 % A1 alloy (0.045-0.1 mm in size) by treatment with NaOH which dissolved most of the Al. This catalyst was stored in passivated and dried form. Prior to the activity test, the catalyst (0.3 g) was treated in H2 at 250 °C for 2 h and then introduced to the reactor under CH. Raney cobalt (RCo), a commercial product, was treated likewise. Alumina supported Ru, Rh, Pd and Pt catalysts (powder) containing 5 wt. % of metal were purchased from Engelhard in reduced form. Prior to the activity test, catalyst (1.5 g) was treated in H2 at 250 °C for 2 h and then introduced to the reactor under solvent. 10 % Ni and 10 % Co/y-Al203 (200 m2/g) catalysts were prepared by incipient wetness impregnation using nitrate precursors. After drying the samples were calcined and reduced at 500 °C for 2 h and were then introduced to the reactor under CH. [Pg.46]

After the catalytic runs no modification of mean particle size is observed for this last system. Conversly, Ru CO) deposited on silica-alumina is readily decomposed at 200°C to metallic particles of 1 nm mean size which are also catalysts for the F-T synthesis. The catalytic activity at 200°C is C i one tenth of the Y zeolite supported ones and methane is practically the only hydrocarbon formed. Electron microscopy examination of the catalyst after reaction reveals a drastic sintering of the... [Pg.199]

Neutral, activity 1 alumina (50-200 pm particle size) purchased from ICN, Inc. was used to fill the sintered-glass funnel. [Pg.237]

To achieve a significant adsorptive capacity an adsorbent must have a high specific area, which implies a highly porous structure with very small micropores. Such microporous solids can be produced in several different ways. Adsorbents such as silica gel and activated alumina are made by precipitation of colloidal particles, followed by dehydration. Carbon adsorbents are prepared by controlled burn-out of carbonaceous materials such as coal, lignite, and coconut shells. The crystalline adsorbents (zeolite and zeolite analogues are different in that the dimensions of the micropores are determined by the crystal structure and there is therefore virtually no distribution of micropore size. Although structurally very different from the crystalline adsorbents, carbon molecular sieves also have a very narrow distribution of pore size. The adsorptive properties depend on the pore size and the pore size distribution as well as on the nature of the solid surface. [Pg.36]

A parameter that determines the performances, as outlined also in patents, is the mean diameter of Pd or doped-Pd particles. This is also one of the claims in Headwaters Nanokinetix Inc. patents. It seems that a maximum in the activity/ selectivity as a function of the particle size is present. Figure 8.11 reports the effect of the Pd-particle size (Pd supported on alumina, prepared by deposition-precipitation method) in the direct synthesis of H202 in water at atmospheric pressure [77]. Low... [Pg.276]

A large number of heterogeneous catalysts have been tested under screening conditions (reaction parameters 60 °C, linoleic acid ethyl ester at an LHSV of 30 L/h, and a fixed carbon dioxide and hydrogen flow) to identify a suitable fixed-bed catalyst. We investigated a number of catalyst parameters such as palladium and platinum as precious metal (both in the form of supported metal and as immobilized metal complex catalysts), precious-metal content, precious-metal distribution (egg shell vs. uniform distribution), catalyst particle size, and different supports (activated carbon, alumina, Deloxan , silica, and titania). We found that Deloxan-supported precious-metal catalysts are at least two times more active than traditional supported precious-metal fixed-bed catalysts at a comparable particle size and precious-metal content. Experimental results are shown in Table 14.1 for supported palladium catalysts. The Deloxan-supported catalysts also led to superior linoleate selectivity and a lower cis/trans isomerization rate was found. The explanation for the superior behavior of Deloxan-supported precious-metal catalysts can be found in their unique chemical and physical properties—for example, high pore volume and specific surface area in combination with a meso- and macro-pore-size distribution, which is especially attractive for catalytic reactions (Wieland and Panster, 1995). The majority of our work has therefore focused on Deloxan-supported precious-metal catalysts. [Pg.231]

Catalysts pre-treatment (calcination and reduction) was performed in the same testing system or in a parallel automatic activation system prior to reaction test Calcination is carried out at 600 °C under airflow for 8 h and reduction at 250 °C for 2 h under hydrogen flow. Catalytic tests were carried out at 30 bar total pressure, temperature range 200-240°C, and 2.26h-1 WHSV, H2/hydrocarbons molar ratio of 2.93. Each fixed bed microreactor contained 500 mg of catalyst (particle size 0.4—0.6 mm, for which there are no internal diffusion limitations). Reaction products distribution are analysed using a gas chromatograph (Varian 3380GC) equipped with a Plot Alumina capillary column. [Pg.142]


See other pages where Particle size activated alumina is mentioned: [Pg.252]    [Pg.405]    [Pg.155]    [Pg.155]    [Pg.156]    [Pg.156]    [Pg.170]    [Pg.128]    [Pg.217]    [Pg.30]    [Pg.170]    [Pg.174]    [Pg.177]    [Pg.88]    [Pg.99]    [Pg.74]    [Pg.349]    [Pg.2]    [Pg.128]    [Pg.70]    [Pg.407]    [Pg.417]    [Pg.184]    [Pg.58]    [Pg.275]    [Pg.276]    [Pg.457]    [Pg.81]    [Pg.20]    [Pg.82]    [Pg.16]    [Pg.18]    [Pg.105]    [Pg.48]    [Pg.190]    [Pg.69]    [Pg.212]    [Pg.70]    [Pg.159]   
See also in sourсe #XX -- [ Pg.280 , Pg.281 , Pg.282 , Pg.283 , Pg.284 , Pg.285 , Pg.286 , Pg.287 ]




SEARCH



Activated alumina

Activation aluminas

Active aluminas

Active particles

Alumina activity

Alumina particle sizes

Alumina particles

© 2024 chempedia.info