Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle scale modeling

Figure 3. Particle scale modeling of gas-liquid cocurrent downflow through a packed bed. Figure 3. Particle scale modeling of gas-liquid cocurrent downflow through a packed bed.
For extrathoracic deposition of particles, the model uses measured airway diameters and experimental data, where deposition is related to particle size and airflow parameters, and scales deposition for women and children from adult male data. Similar to the extrathoracic region, experimental data served as the basis for lung (bronchi, bronchioles, and alveoli) aerosol transport and deposition. A theoretical model of gas transport and particle deposition was used to interpret data and to predict deposition for compartments and subpopulations other than adult males. Table 3-4 provides reference respiratory values for the general Caucasian population during various intensities of physical exertion. [Pg.78]

A technique which can assist in the scale-up of commercial plants designs is the use of scale models. A scale model is an experimental model which is smaller than the hot commercial bed but which has identical hydrodynamic behavior. Usually the scale model is fluidized with air at ambient conditions and requires particles of a different size and density than those used in the commercial bed. The scale model relies on the theory of similitude, sometimes through use of Buckingham s pi theorem, to design a model which gives identical hydrodynamic behavior to the commercial bed. Such a method is used in the wind tunnel testing of small model aircraft or in the towing tank studies of naval vessels. [Pg.26]

Using these Reynolds number scale factors, the errors in the dimensionless drag coefficient j3L/psua using the simplified scaling models are shown in Figs. 24 and 25 for u0/umf of 10 and 1000, respectively, plotted as a function of Rep, based on parameters for the exact scaled bed. For a particle Reynolds number of 1000 or less, which corresponds to... [Pg.46]

Individual Particles. If the drag coefficient, j8, is influenced by the characteristics of individual particles, the detailed particle dynamics of the simplified scale models must be examined. In this case... [Pg.49]

Table 1 gives the values of design and operating parameters of a scale model fluidized with air at ambient conditions which simulates the dynamics of an atmospheric fluidized bed combustor operating at 850°C. Fortunately, the linear dimensions of the model are much smaller, roughly one quarter those of the combustor. The particle density in the model must be much higher than the particle density in the combustor to maintain a constant value of the gas-to-solid density ratio. Note that the superficial velocity of the model differs from that of the combustor along with the spatial and temporal variables. [Pg.59]

Glicksman and Farrell (1995) constructed a scale model of the Tidd 70 MWe pressurized fluidized bed combustor. The scale model was fluidized with air at atmospheric pressure and temperature. They used the simplified set of scaling relationships to construct a one-quarter length scale model of a section of the Tidd combustor shown in Fig. 34. Based on the results of Glicksman and McAndrews (1985), the bubble characteristics within a bank of horizontal tubes should be independent of wall effects at locations at least three to five bubble diameters away from the wall. Low density polyurethane beads were used to obtain a close fit with the solid-to-gas density ratio for the combustor as well as the particle sphericity and particle size distribution (Table 6). [Pg.77]

The heat transfer from tubes in the freeboard was also measured for the 20 MW model. Figure 45 shows a comparison of the measured overall heat transfer coefficient in the 20 MW pilot plant versus that predicted from the scale model test. When the bed height is lowered, uncovering some tubes, the heat transfer is reduced because there are fewer particles contacting the tube surface. Although the scale model did not include proper scaling for convective heat transfer, the rate of change of the overall heat transfer should be a function of the hydrodynamics. [Pg.87]

Ackeskog et al. (1993) made the first heat transfer measurements in a scale model of a pressurized bubbling bed combustor. These results shed light on the influence of particle size, density and pressure levels on the fundamental mechanism of heat transfer, e.g., the increased importance of the gas convective component with increased pressure. [Pg.87]

The scale models must be carefully designed. Failure to match the important dimensionless parameters will lead to erroneous simulation results. Modeling can be extended to particle convective heat transfer. Wear or erosion of in-bed surfaces can be qualitatively studied, although quantitative assessment requires the identification and simulation of additional wear-related parameters. [Pg.102]

The methods used for modeling pure granular flow are essentially borrowed from that of a molecular gas. Similarly, there are two main types of models the continuous (Eulerian) models (Dufty, 2000) and discrete particle (Lagrangian) models (Herrmann and Luding, 1998 Luding, 1998 Walton, 2004). The continuum models are developed for large-scale simulations, where the controlling equations resemble the Navier-Stokes equations for an ordinary gas flow. The discrete particle models (DPMs) are typically used in small-scale simulations or... [Pg.68]

The terms Jga and Jsa are the diffusive fluxes of species a in the gas and solid phases, respectively. Note that in addition to molecular-scale diffusion, these terms include dispersion due to particle-scale turbulence. The latter is usually modeled by introducing a gradient-diffusion model with an effective diffusivity along the lines of Eqs. (149) and (151). Thus, for large particle Reynolds numbers the molecular-scale contribution will be negligible. The term Ma is the... [Pg.296]

It is emphasized by several authors that an all-round mathematical model describing the thermochemical conversion process in the conversion zone needs to take both the micro- and the macro-perspective into account [25,26]. The micro-scale perspective in this context will refer to the single particle scale, whereas the macro-scale corresponds to an overall fuel-bed perspective. [Pg.90]

Consider a fluidized bed operated at an elevated temperature, e.g. 800°C, and under atmospheric pressure with ah. The scale model is to be operated with air at ambient temperature and pressure. The fluid density and viscosity will be significantly different for these two conditions, e.g. the gas density of the cold bed is 3.5 times the density of the hot bed. In order to maintain a constant ratio of particle-to-fluid density, the density of the solid particles in the cold bed must be 3.5 times that in the hot bed. As long as the solid density is set, the Archimedes number and the Froude number are used to determine the particle diameter and the superficial velocity of the model, respectively. It is important to note at this point that the rale of similarity requires the two beds to be geometrically similar in construction with identical normalized size distributions and sphericity. It is easy to prove that the length scales (Z, D) of the ambient temperature model are much lower than those in the hot bed. Thus, an ambient bed of modest size can simulate a rather large hot bed under atmospheric pressure. [Pg.542]

Li, J., Multi-Scale Modeling and Method of Energy Minimization for Particle-Fluid Two Phase Flow, Ph.D. thesis (in Chinese), Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing (1987). [Pg.55]


See other pages where Particle scale modeling is mentioned: [Pg.138]    [Pg.138]    [Pg.382]    [Pg.230]    [Pg.39]    [Pg.44]    [Pg.47]    [Pg.51]    [Pg.56]    [Pg.64]    [Pg.82]    [Pg.84]    [Pg.84]    [Pg.88]    [Pg.99]    [Pg.100]    [Pg.106]    [Pg.579]    [Pg.66]    [Pg.71]    [Pg.72]    [Pg.128]    [Pg.252]    [Pg.291]    [Pg.292]    [Pg.336]    [Pg.203]    [Pg.422]    [Pg.341]    [Pg.3]    [Pg.15]    [Pg.19]    [Pg.20]    [Pg.30]    [Pg.35]   
See also in sourсe #XX -- [ Pg.412 , Pg.413 ]




SEARCH



Model, scale

Modeling at the particle scale

Modeling scale

Models particles

Particle scale

Scaled discrete particle model

Scaled-particle model

Scaled-particle model

© 2024 chempedia.info