Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial differential equations setting

The problem of a porous catalyst pellet, which had been addressed in the paper of Ray and Hastings, was later treated extensively by Jensen and Ray (242,297). They used surface coverage equations and mass and heat balances for the whole pellet, all of which, except for the heat balance, were solved for the nonlumped case. The solutions of the resultant partial differential equation set were obtained by collocation techniques. The surface reaction was assumed to be unimolecular and slightly more complex than the mechanism analyzed by Ray and Hastings in that the adsorption step was permitted to be reversible ... [Pg.84]

The present chapter provides an overview of several numerical techniques that can be used to solve model equations of ordinary and partial differential type, both of which are frequently encountered in multiphase catalytic reactor analysis and design. Brief theories of the ordinary differential equation solution methods are provided. The techniques and software involved in the numerical solution of partial differential equation sets, which allow accurate prediction of nonreactive and reactive transport phenomena in conventional and nonconventional geometries, are explained briefly. The chapter is concluded with two case studies that demonstrate the application of numerical solution techniques in modeling and simulation of hydrocar-bon-to-hydrogen conversions in catalytic packed-bed and heat-exchange integrated microchannel reactors. [Pg.253]

The character of the computational tools There are certain types of equation sets that still pose a problem for numerical methods. These include some nonlinear algebraic and certain nonlinear partial differential equation sets. [Pg.8]

A problem in implementing the time loop is in starting the set of calculations since the time derivative replacements require known values of the first and second time derivative at the initial time point. When beginning the solution of a partial differential equation set these are not generally known. If the equation set is... [Pg.716]

On subsciCuLlng (12.49) into uhe dynamical equations we may expand each term in powers of the perturbations and retain only terms of the zeroth and first orders. The terms of order zero can then be eliminated by subtracting the steady state equations, and what remains is a set of linear partial differential equations in the perturbations. Thus equations (12.46) and (12.47) yield the following pair of linearized perturbation equations... [Pg.172]

Dynamic meteorological models, much like air pollution models, strive to describe the physics and thermodynamics of atmospheric motions as accurately as is feasible. Besides being used in conjunction with air quaHty models, they ate also used for weather forecasting. Like air quaHty models, dynamic meteorological models solve a set of partial differential equations (also called primitive equations). This set of equations, which ate fundamental to the fluid mechanics of the atmosphere, ate referred to as the Navier-Stokes equations, and describe the conservation of mass and momentum. They ate combined with equations describing energy conservation and thermodynamics in a moving fluid (72) ... [Pg.383]

Mathematical and Computational Implementation. Solution of the complex systems of partial differential equations governing both the evolution of pollutant concentrations and meteorological variables, eg, winds, requires specialized mathematical techniques. Comparing the two sets of equations governing pollutant dynamics (eq. 5) and meteorology (eqs. 12—14) shows that in both cases they can be put in the form ... [Pg.384]

Errors are proportional to At for small At. When the trapezoid rule is used with the finite difference method for solving partial differential equations, it is called the Crank-Nicolson method. The implicit methods are stable for any step size but do require the solution of a set of nonlinear equations, which must be solved iteratively. The set of equations can be solved using the successive substitution method or Newton-Raphson method. See Ref. 36 for an application to dynamic distillation problems. [Pg.473]

In the finite-difference appntach, the partial differential equation for the conduction of heat in solids is replaced by a set of algebraic equations of temperature differences between discrete points in the slab. Actually, the wall is divided into a number of individual layers, and for each, the energy conserva-tk>n equation is applied. This leads to a set of linear equations, which are explicitly or implicitly solved. This approach allows the calculation of the time evolution of temperatures in the wall, surface temperatures, and heat fluxes. The temporal and spatial resolution can be selected individually, although the computation time increa.ses linearly for high resolutions. The method easily can be expanded to the two- and three-dimensional cases by dividing the wall into individual elements rather than layers. [Pg.1067]

This set of partial differential equations has two boundary conditions at each edge which are represented by the first two choices in Equations (D.23) and (D.24). When the geometric boundary condition of edge restraint in the z-direction is considered, the Kirchhoff shear force is not active as a boundary condition. [Pg.503]

Finite element methods [20,21] have replaced finite difference methods in many fields, especially in the area of partial differential equations. With the finite element approach, the continuum is divided into a number of finite elements that are assumed to be joined by a discrete number of points along their boundaries. A function is chosen to represent the variation of the quantity over each element in terms of the value of the quantity at the boundary points. Therefore a set of simultaneous equations can be obtained that will produce a large, banded matrix. [Pg.91]

The overall set of partial differential equations that can be considered as a mathematical characterization of the processing system of gas-liquid dispersions should include such environmental parameters as composition, temperature, and velocity, in addition to the equations of bubble-size and residence-time distributions that describe the dependence of bubble nucleation and growth on the bubble environmental factors. A simultaneous solution of this set of differential equations with the appropriate initial and boundary conditions is needed to evaluate the behavior of the system. Subject to the Curie principle, this set of equations should include the possibilities of coupling effects among the various fluxes involved. In dispersions, the possibilities of couplings between fluxes that differ from each other by an odd tensorial rank exist. (An example is the coupling effect between diffusion of surfactants and the hydrodynamics of bubble velocity as treated in Section III.) As yet no analytical solution of the complete set of equations has been found because of the mathematical difficulties involved. To simplify matters, the pertinent transfer equation is usually solved independently, with some simplifying assumptions. [Pg.333]

Population Density Response Surface. The algorithm method of characteristic is used to reduce the partial differential Equation (1) into a set pf coupled ordinary differential equations. Since T(n,t) is an exact differential, then... [Pg.380]

In the first chapter several traditional types of physical models were discussed. These models rely on the physical concepts of energies and forces to guide the actions of molecules or other species, and are customarily expressed mathematically in terms of coupled sets of ordinary or partial differential equations. Most traditional models are deterministic in nature— that is, the results of simulations based on these models are completely determined by the force fields employed and the initial conditions of the simulations. In this chapter a very different approach is introduced, one in which the behaviors of the species under investigation are governed not by forces and energies, but by rules. The rules, as we shall see, can be either deterministic or probabilistic, the latter leading to important new insights and possibilities. This new approach relies on the use of cellular automata. [Pg.9]

Generally, the closure problem reflects the idea of a spatially periodic porous media, whereby the entire structure can be described by small portions (averaging volumes) with well-defined geometry. Two limitations of the method are therefore related to how well the overall media can be represented by spatially periodic subunits and the degree of difficulty in solving the closure problem. Not all media can be described as spatially periodic [6,341 ]. In addition, the solution of the closure problem in a complex domain may not be any easier than solving the original set of partial differential equations for the entire system. [Pg.563]

The primary classification that is employed throughout this book is algebraic versus differential equation models. Namely, the mathematical model is comprised of a set of algebraic equations or by a set of ordinary (ODE) or partial differential equations (PDE). The majority of mathematical models for physical or engineered systems can be classified in one of these two categories. [Pg.7]

In this chapter we concentrate on dynamic, distributed systems described by partial differential equations. Under certain conditions, some of these systems, particularly those described by linear PDEs, have analytical solutions. If such a solution does exist and the unknown parameters appear in the solution expression, the estimation problem can often be reduced to that for systems described by algebraic equations. However, most of the time, an analytical solution cannot be found and the PDEs have to be solved numerically. This case is of interest here. Our general approach is to convert the partial differential equations (PDEs) to a set of ordinary differential equations (ODEs) and then employ the techniques presented in Chapter 6 taking into consideration the high dimensionality of the problem. [Pg.167]

Equations 10.15 to 10.17 define a set of (nxp) partial differential equations for the sensitivity coefficients that need to be solved at each iteration of the Gauss-Newton method together with the n PDEs for the state variables. [Pg.171]

At this point we can summarize the steps required to implement the Gauss-Newton method for PDE models. At each iteration, given the current estimate of the parameters, ky we obtain w(t,z) and G(t,z) by solving numerically the state and sensitivity partial differential equations. Using these values we compute the model output, y(t k(i)), and the output sensitivity matrix, (5yr/5k)T for each data point i=l,...,N. Subsequently, these are used to set up matrix A and vector b. Solution of the linear equation yields Ak(jH) and hence k°M) is obtained. The bisection rule to yield an acceptable step-size at each iteration of the Gauss-Newton method should also be used. [Pg.172]

The mathematical model for a hydrocarbon reservoir consists of a number of partial differential equations (PDEs) as well as algebraic equations. The number of equations depends on the scope/capabilities of the model. The set of PDEs is often reduced to a set of ODES by grid discretization. The estimation of the reservoir parameters of each grid cell is the essence ofhistory matching. [Pg.371]

Another kind of situation arises when it is necessary to take into account the long-range effects. Here, as a rule, attempts to obtain analytical results have not met with success. Unlike the case of the ideal model the equations for statistical moments of distribution of polymers for size and composition as well as for the fractions of the fragments of macromolecules turn out normally to be unclosed. Consequently, to determine the above statistical characteristics, the necessity arises for a numerical solution to the material balance equations for the concentration of molecules with a fixed number of monomeric units and reactive centers. The difficulties in solving the infinite set of ordinary differential equations emerging here can be obviated by switching from discrete variables, characterizing macromolecule size and composition, to continuous ones. In this case the mathematical problem may be reduced to the solution of one or several partial differential equations. [Pg.173]

We will first consider the simple case of diffusion of a non-electrolyte. The course of the diffusion (i.e. the dependence of the concentration of the diffusing substance on time and spatial coordinates) cannot be derived directly from Eq. (2.3.18) or Eq. (2.3.19) it is necessary to obtain a differential equation where the dependent variable is the concentration c while the time and the spatial coordinates are independent variables. The derivation is thus based on Eq. (2.2.10) or Eq. (2.2.5), where we set xj> = c and substitute from Eq. (2.3.18) or Eq. (2.3.19) for the fluxes. This yields Fick s second law (in fact, this is only a consequence of Fick s first law respecting the material balance—Eq. 2.2.10), which has the form of a partial differential equation... [Pg.116]

It should be noted that the above assumptions are questionable when fast transient or large-pressure-drop flows are involved. By using these assumptions, the set is reduced to a set of three partial differential equations. [Pg.503]

Howarth [33] showed that the above partial differential equations may be transformed into a set of ordinary differential equations by introducing the following dimensionless variables and velocity components ... [Pg.175]


See other pages where Partial differential equations setting is mentioned: [Pg.101]    [Pg.207]    [Pg.80]    [Pg.101]    [Pg.207]    [Pg.80]    [Pg.193]    [Pg.114]    [Pg.141]    [Pg.159]    [Pg.101]    [Pg.384]    [Pg.456]    [Pg.221]    [Pg.853]    [Pg.227]    [Pg.486]    [Pg.566]    [Pg.593]    [Pg.65]    [Pg.80]    [Pg.381]    [Pg.146]    [Pg.240]    [Pg.172]    [Pg.239]    [Pg.22]    [Pg.43]    [Pg.24]   
See also in sourсe #XX -- [ Pg.66 ]

See also in sourсe #XX -- [ Pg.78 , Pg.82 ]




SEARCH



Differential equation, setting

Differential equations partial

Partial differential

Partial equation

Setting Up Partial Differential Equations

© 2024 chempedia.info