Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial differential equation numerical approximation methods

See also Numerical Analysis and Approximate Methods and General References References for General and Specific Topics—Advanced Engineering Mathematics for additional references on topics in ordinary and partial differential equations. [Pg.453]

Discretization of the governing equations. In this step, the exact partial differential equations to be solved are replaced by approximate algebraic equations written in terms of the nodal values of the dependent variables. Among the numerous discretization methods, finite difference, finite volume, and finite element methods are the most common. Tlxe finite difference method estimates spatial derivatives in terms of the nodal values and spacing between nodes. The governing equations are then written in terms of... [Pg.673]

Although only approximate analytical solutions to this partial differential equation have been available for x(s,D,r,t), accurate numerical solutions are now possible using finite element methods first introduced by Claverie and coworkers [46] and recently generalized to permit greater efficiency and stabihty [42,43] the algorithm SEDFIT [47] employs this procedure for obtaining the sedimentation coefficient distribution. [Pg.223]

The modeling of steady-state problems in combustion and heat and mass transfer can often be reduced to the solution of a system of ordinary or partial differential equations. In many of these systems the governing equations are highly nonlinear and one must employ numerical methods to obtain approximate solutions. The solutions of these problems can also depend upon one or more physical/chemical parameters. For example, the parameters may include the strain rate or the equivalence ratio in a counterflow premixed laminar flame (1-2). In some cases the combustion scientist is interested in knowing how the system mil behave if one or more of these parameters is varied. This information can be obtained by applying a first-order sensitivity analysis to the physical system (3). In other cases, the researcher may want to know how the system actually behaves as the parameters are adjusted. As an example, in the counterflow premixed laminar flame problem, a solution could be obtained for a specified value of the strain... [Pg.404]

The partial differential equations representing material and energy balances of a reaction in a packed bed are rarely solvable by analytical means, except perhaps when the reaction is of zero or first order. Two examples of derivation of the equations and their analytical solutions are P8.0.1.01 and P8.01.02. In more complex cases analytical, approximations can be made (by "Collocation" or "Perturbation", for instance), but these usually are quite sophisticated to apply. Numerical solutions, on the other hand, are simple in concept and are readily implemented on a computer. Two such methods that are suited to nonlinear kinetics problems will be described. [Pg.810]

The system of hyperbolic and parabolic partial differential equations representing the ID or 2D model of monolith channel is solved by the finite differences method with adaptive time-step control. An effective numerical solution is based on (i) discretization of continuous coordinates z, r and t, (ii) application of difference approximations of the derivatives, (iii) decomposition of the set of equations for Ts, T, c and cs, (iv) quasi-linearization of... [Pg.122]

The aim of molecular orbital theory is to provide a complete description of the energies of electrons and nuclei in molecules. The principles of the method are simple a partial differential equation is set up, the solutions to which are the allowed energy levels of the system. However, the practice is rather different, and, just as it is impossible (at present) to obtain exact solutions to the wave equations for polyelectronic atoms, so it is not possible to obtain exact solutions for molecular species. Accordingly, the application of molecular orbital theory to molecules is in a regime of successive approximations. Numerous rigorous mathematical methods have been utilised in the effort to obtain ever more accurate solutions to the wave equations. This book is not concerned with the details of the methods which have been used, but only with their results. [Pg.9]

The most common methodology when solving transient problems using the finite element method, is to perform the usual Garlerkin weighted residual formulation on the spatial derivatives, body forces and time derivative terms, and then using a finite difference scheme to approximate the time derivative. The development, techniques and limitations that we introduced in Chapter 8 will apply here. The time discretization, explicit and implicit methods, stability, numerical diffusion etc., have all been discussed in detail in that chapter. For a general partial differential equation, we can write... [Pg.466]

While the boundary layer equations that were derived in the preceding sections are much simpler than the general equations from which they were derived, they still form a complex set of simultaneous partial differential equations. Analytical solutions to this set of equations have been obtained in a few important cases. For the majority of flows, however, a numerical solution procedure must be adopted. Such solutions are readily obtained today using modest modem computing facilities. This was, however, not always so. For this reason, approximate solutions to the boundary layer equations have in the past been quite widely used. While such methods of solution are less important today, they are still used to some extent. One such approach will, therefore, be considered in the present text. [Pg.71]

Finite element methods — The finite element method is a powerful and flexible numerical technique for the approximate solution of (both ordinary and partial) differential equations involving replacing the continuous problem with unknown solution by a system of algebraic equations. The method was first introduced by Richard Courant in 1943 [i], and over the next three decades, and particularly in the 1960s, a comprehensive mathematical framework was developed to underpin the method. [Pg.273]

Unlike the radiant loss from an optically thin flame, conductive or convective losses never can be consistent exactly with the plane-flame assumption that has been employed in our development. Loss analyses must consider non-one-dimensional heat transfer and should also take flame shapes into account if high accuracy is to be achieved. This is difficult to accomplish by methods other than numerical integration of partial differential equations. Therefore, extinction formulas that in principle can be used with an accuracy as great as that of equation (21) for radiant loss are unavailable for convective or conductive loss. The most convenient approach in accounting for convective or conductive losses appears to be to employ equation (24) with L(7 ) estimated from an approximate analysis. The accuracy of the extinction prediction then depends mainly on the accuracy of the heat-loss estimate. Rough heat-loss estimates are readily obtained from overall balances. [Pg.282]

The behavior of materials is governed by the physical processes that act on those materials. Mathematical models of these physical processes are based on partial differential equations (PDFs). Most of the time, only materials undergoing simple processes can be treated with direct analytic solutions. Numerical methods then become the only alternative available for the solution of detailed and realistic models. Material developers call upon numerical methods to solve a PDF or a combination of PDFs on discrete set of points of the solution domain called discretization. Here, the solution domain is divided into subdomains having the discretization points as vertice the distance between two adjacent vertices is the mesh size. Time is also subdivided into discrete intervals timestep is the interval between two consecutive times at which the solution is obtained. The PDF is then approximated,... [Pg.1551]

One method to solve partial differential equations using the numerical schemes developed for solving time dependent ordinary differential methods is the method of lines. In this method, the spatial derivatives at time t are replaced by discrete approximations such as finite differences or finite element methods such as collocation or Galerkin. The reason for this approach is the advanced stage of development of schemes to solve ordinary differential equations. The resulting numerical schemes are frequently similar to those developed directly for partial differential equations. [Pg.1955]

Methods for solving mass and heat transfer problems. The convective diffusion equation (3.1.1) is a second-order linear partial differential equation with variable coefficients (in the general case, the fluid velocity depends on the coordinates and time). Exact closed-form solutions of the corresponding problems can be found only in exceptional cases with simple geometry [79,197, 270, 370, 516]. This is especially true of the nonlinear equation (3.1.17). Exact solutions are important for adequate understanding of the physical background of various phenomena and processes. They can serve as test solutions to verify whether the problem is well-posed or to estimate the accuracy of the corresponding numerical, asymptotic, and approximate methods. [Pg.116]

The model equations were solved numerically by discretizing the partial differential equations (PDEs) with respect to the spatial coordinate (x). Central finite difference formulae were used to approximate the first and second derivatives (e.g. dc,/dx, d77ck). Thus the PDEs were transformed to ODEs with respect to the reaction time and the finite difference method was used in the numerical solution. The recently developed software of Buzzi Ferraris and Manca was used, since it turned out to be more rapid than the classical code of Hindmarsh. [Pg.467]


See other pages where Partial differential equation numerical approximation methods is mentioned: [Pg.272]    [Pg.272]    [Pg.164]    [Pg.405]    [Pg.466]    [Pg.272]    [Pg.18]    [Pg.543]    [Pg.405]    [Pg.43]    [Pg.29]    [Pg.543]    [Pg.96]    [Pg.343]    [Pg.49]    [Pg.291]    [Pg.151]    [Pg.51]    [Pg.28]    [Pg.135]    [Pg.57]    [Pg.23]    [Pg.593]    [Pg.822]    [Pg.531]    [Pg.1552]    [Pg.1956]    [Pg.1957]    [Pg.182]    [Pg.1]    [Pg.605]    [Pg.830]   
See also in sourсe #XX -- [ Pg.3 , Pg.1942 ]




SEARCH



Approximation methods

Differential equations method

Differential equations partial

Differential method

Differentiation, numerical

Method numerical

Numerical differentiator

Numerical equation

Numerical methods differential equations

Partial differential

Partial differential equations, numerical

Partial equation

© 2024 chempedia.info