Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Papain ester hydrolysis

Later, oxyanion holes were also discovered in other proteases, such as the cysteine protease papain, and in esterases and lipases, enzymes capable of esterification or ester hydrolysis. Interestingly, in these esterases, sometimes up to three hydrogen bond donors can be located within 3 A of the carbonyl oxygen atom, whereas such triple hydrogen bonding motifs have not yet been found in the proteases. [Pg.49]

The specific activity of papain is determined using the synthetic peptide substrate N-benzoyl-L-aigmine ethyl ester. Hydrolysis is carried out at pH 7.0 and 25 X and die consumorion of base, necessary to neutralize the lihemiwl acid, is recorded as a function of time. [Pg.383]

Recently a simplified process was developed for incorporating l-methionine directly into soy proteins during the papain-catalyzed hydrolysis (21). The covalent attachment of the amino acid requires a very high concentration of protein and occurs through the formation of an acyl-enzyme intermediate and its subsequent aminolysis by the methionine ester added in the medium. From a practical point of view, the main advantage of enzymatic incorporation of amino acids into food proteins, in comparison with chemical methods, probably lies in the fact that racemic amino acid esters such as D,L-methionine ethyl ester can be used since just the L-form of the racemate is used by the stereospecific proteases. On the other hand, papain-catalyzed polymerization of L-methio-nine, which may occur at low protein concentration (39), will result in a loss of methionine because of the formation of insoluble polyamino acid chains greater than 7 units long. [Pg.153]

Figure 1. A simplified representation of the possible process for the papain-catalyzed hydrolysis and aminolysis E, enzyme (papain) S, substrate (protein) ES, Michaelis complex ES, peptidyl enzyme N, nucleophile (amino acid ester) P and P2, products formed from S by hydrolysis ... Figure 1. A simplified representation of the possible process for the papain-catalyzed hydrolysis and aminolysis E, enzyme (papain) S, substrate (protein) ES, Michaelis complex ES, peptidyl enzyme N, nucleophile (amino acid ester) P and P2, products formed from S by hydrolysis ...
Carrieri, A., Altomare, C, Barreca, M.L., Contento, A., Carotti, A. and Hansch, C. (1994). Papain Catalyzed Hydrolysis of Aryl Esters A Comparison of the Hansch, Docking and CoMFA Methods. II Farmaco, 49,573-585. [Pg.547]

C. W. Wharton, A. Comish-Bowden, K. Brocklehurst, and E. M. Crook. Kinetics of the hydrolysis of N-benzoyl-L-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolysis. Biochem. J. 141 365 (1974). [Pg.148]

The ferrocene 44 bearing only one tetrapeptide chain (-Gly-Gly-L-Tyr-L-Arg-OH) is designed to bind to papain [147]. The ferrocene 44 acts as an efficient competitive papain inhibitor for AT-benzoylarginine ethyl ester hydrolysis, with an inhibition constant Ki of 9 xM at pH 6.2. Binding of papain to the ferrocene receptor 44 causes an electrochemical response, resulting in a small cathodic shift of the redox potential of the ferrocene moiety of 44. [Pg.169]

Pish protein concentrate and soy protein concentrate have been used to prepare a low phenylalanine, high tyrosine peptide for use with phenylketonuria patients (150). The process includes pepsin hydrolysis at pH 1.5 ptonase hydrolysis at pH 6.5 to Hberate aromatic amino acids gel filtration on Sephadex G-15 to remove aromatic amino acids incubation with papain and ethyl esters of L-tyrosine and L-tryptophan, ie, plastein synthesis and ultrafiltration (qv). The plastein has a bland taste and odor and does not contain free amino acids. Yields of 69.3 and 60.9% from PPG and soy protein concentrate, respectively, have been attained. [Pg.471]

Fig. 19 Structure of LA-PRX (above) and degradation of LA-PRX (below), (a) Threaded a-CDs prevent hydrolysis of PLLA in LA-PRX. (b) LA-PRX converts into LA-pPRX by peptide linkage cleavage at bulky end-capping groups through action of papain, (c) Ester bond hydrolysis in the PLLA chain begins by an exposure of PLLA to water by release of a-CDs from LA-pPRX. Reprinted from [292] with permission... Fig. 19 Structure of LA-PRX (above) and degradation of LA-PRX (below), (a) Threaded a-CDs prevent hydrolysis of PLLA in LA-PRX. (b) LA-PRX converts into LA-pPRX by peptide linkage cleavage at bulky end-capping groups through action of papain, (c) Ester bond hydrolysis in the PLLA chain begins by an exposure of PLLA to water by release of a-CDs from LA-pPRX. Reprinted from [292] with permission...
Proteases have also been successfully used in ionic liquids. Papain mediated the enantioselective hydrolysis of a number of amino acid esters in an 80 20 mixture of [BMIm][BF4] and water [68]. The reaction rate was approx. 50% of that in aqueous buffer and equal to that in aqueous mixtures containing 70- 80% of solvents such as acetonitrile or tert-butyl alcohol. [Pg.232]

Proteases such as a-chymotrypsin, papain, and subtilisin are also useful biocatalysts for regio-selective or stereoselective hydrolytic biotransformations. For example, dibenzyl esters of aspartic and glutamic acid can be selectively deprotected at the 1-position by subtilisin-catalyzed hydrolysis (Fig. 6). In addition, a-chymotrypsin is used in the kinetic resolution of a-nitro-a-methyl carboxylates, which results in l-configured enantiomers of the unhydrolyzed esters with high optical purity (>95% e.e.). ... [Pg.107]

The first protease-catalyzed reaction in ILs was the Z-aspartame synthesis (Scheme 10.7) from carbobenzoxy-L-aspartate and L-phenylalanine methyl ester catalyzed by thermolysin in [BMIM] [PF ] [ 14]. Subtilisin is a serine protease responsible for the conversion of A -acyl amino acid ester to the corresponding amino acid derivatives. Zhao et al. [90] have used subtilisin in water with 15% [EtPy][CF3COO] as cosolvent to hydrolytically convert a series of A -acyl amino acid esters often with higher enantioselectivity than with organic cosolvent like acetonitrile (Scheme 10.8, Table 10.2). They specifically achieved l-serine and L-4-chlorophenylalanine with an enantiomeric access (ee) of-90% and -35% product yield which was not possible with acetonitrile as a cosolvent [90]. Another example is hydrolysis of A-unprotected amino acid ester in the presence of a cysteine protease known as papain. Liu et al. [Pg.257]

Protein Hydrolysates. Instead of ethyl hippurate, a peptic hydrolysate of ovalbumin was used as substrate for the resynthesis reaction (64). This substrate (300 mg) was dissolved in water, adjusted to pH 6.0 with NaOH and to 0.9 ml with additional water. An amino acid ester was added to produce a 22.2mM solution and the mixture preincubated at 37°C for 15 min. Papain (3 mg), dissolved in 0.1M L-cysteine (0.1 ml), was combined with the above-mentioned preincubation mixture and incubation carried out at 37°C. After 2 hr, 0.1N NaOH (10 ml) was added to stop the enzymatic reaction and the resulting solution allowed to stand for 3 hr to hydrolyze completely the remaining amino acid ester as well as the ester group from the peptide product. The free amino acid produced from the base-catalyzed hydrolysis of the amino acid ester was determined with an amino acid analyzer. The amount of the amino acid incorporated was obtained by subtracting the determined value from the initial concentration of amino acid ester. The data obtained with the same L-amino acid esters as used in the model experiment (above) are plotted along the ordinate of Figure 3. An excellent correlation is found between the data from the model experiment and those from this experiment using a protein hydrolysate. In Table III data are shown for the extent of covalent incorporation after 2 hr of various amino acid ethyl esters into the protein hydrolysate. There is a close relationship between... [Pg.171]

Yamashita et al. (65) incorporated L-methionine into a soybean protein hydrolysate by means of the plastein reaction with papain. A 10 1 mixture of a peptic hydrolysate of soybean protein isolate and L-methionine ethyl ester was incubated in the presence of papain, the conditions being similar to those mentioned above. The methionine content of the plastein was 7.22 wt %, nearly seven times the original methionine content of the soybean protein isolate. To determine the location of the incorporated methionine residues, the plastein was treated with carboxypeptidase A. Methionine was liberated much faster than any other amino acid. A second portion of the plastein was methylated and then treated with lithium borohydride to reduce the COOH to CH2OH. Hydrolysis of the chemically treated plastein with 6N HC1 gave aminols in satisfactory yields. Subsequently, the aminols were converted to their DNP-derivatives, which were separated by thin layer chromatography. These experiments, together with some others, showed that 84.9% (molar basis) of the C-terminals of the plastein molecules were occupied with methionine, whereas only 14.4% of the N-terminals contained methionine. [Pg.172]

Aso et al. [95] studied a model system in order to obtain basic information on the mechanism of amino acid incorporation during an enzymatic modification reaction in the presence of papain. They found that the amino acid ester reacted as a nucleophile in the aminolysis of the acyl-enzyme intermediate to result in the formation of new peptides. Several proteases used in enzymatic peptide bond synthesis are known to form transitory acyl-enzyme intermediates during the hydrolysis of proteins. However, the acyl groups can be transferred to other nucleophiles (amino terminals of peptides or amino acids), synthesizing new peptide bonds [71]. With full knowledge of the above-mentioned facts, covalent amino acid enrichment of proteins can result in... [Pg.141]

Functional properties of some enzymatically modified and EPM-treated products of milk proteins [136] were determined as follows. An enzymatically prehydrolyzed commercial milk protein concentrate (SR) without further hydrolysis, and casein hydrolyzed by alcalase, a-chymotrypsin, and papain, respectively, were used as substrates in the EPM reaction. The concentration of the hydrolysates was 20% w/ v in the EPM reactions. A methionine methyl ester hydrochloride/ substrate ratio of 1 5 was used for incorporating this amino acid. After incubation, the products with methionine incorporation were simultaneously dialyzed for 2 days through a cellophane membrane against distilled water. The nondialyzable fractions and the EPM products without amino acid enrichment were freeze-dried. Covalent methionine incorporation in the EPM products with amino acid enrichment was verified by exopeptidase hydrolysis of the protein chains. The functional properties of the different EPM products are summarized in Table 1. An important functional property of proteins and/or peptide mixtures is their emulsifying behavior. This is highly influenced by the molecular structure, the position and ratio of hydrophobic-hydrophilic amino acids. Emulsion activity was found to be low (34.0) for casein, and the values determined for enzyme hydrolyzed and modified products were in general even lower. The papain hydrolysate, sample H3, showed here a different behavior as well this was the one of the sample series that had the highest EAI value (43.0). The emulsion stability of the enzymatically modified products displayed tendencies quite opposite to the values of emul-... [Pg.153]

Amino-acid Protection. - Carboxyamidomethyl (CAM) esters have been shown to be useful protecting groups in a-chymotrypsin and papain-catalysed peptide hydrolysis and synthesis.5 10 1,3-Dioxans (582) can be obtained from Na-protected serine derivatives by acid-catalysed transacetalation and are sufficiently robust to survive both amino deprotection and peptide coupling reactions. 11 (L)-Histidine benzyl ester can be prepared as the ditosylate salt... [Pg.189]


See other pages where Papain ester hydrolysis is mentioned: [Pg.603]    [Pg.61]    [Pg.236]    [Pg.109]    [Pg.121]    [Pg.78]    [Pg.86]    [Pg.36]    [Pg.416]    [Pg.178]    [Pg.320]    [Pg.148]    [Pg.304]    [Pg.24]    [Pg.143]    [Pg.298]    [Pg.310]    [Pg.652]    [Pg.860]    [Pg.318]    [Pg.271]    [Pg.257]    [Pg.1463]    [Pg.47]    [Pg.1337]    [Pg.170]    [Pg.173]    [Pg.316]    [Pg.300]   
See also in sourсe #XX -- [ Pg.61 , Pg.74 ]




SEARCH



Papain

© 2024 chempedia.info