Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pantothenic synthesis

Application of Carbonyl Reductases to the Production of Chiral Intermediates for D-Pantothenate Synthesis... [Pg.69]

The development of a novel production system for D-pantoyl lactone (which is a lactone compound carrying a chiral hydroxy group and a chiral intermediate for the commercial production of D-pantothenate) by microbial asymmetric reduction has been undertaken. D-pantothenate is mainly used in various pharmaceutical products and as an animal feed additive, the current world production of calcium pantothenate being about 6,000 tons per year. Conventional commercial production of D-pantoyl lactone has depended exclusively on chemical synthesis involving optical resolution of a chemically synthesized racemic pantoyl lactone, which is the most troublesome step of the pantothenate synthesis process. [Pg.357]

Figure 3. Branched chain amino acid and pantothenate synthesis. TD and ALS are the enzymes threonine deaminase and acetolactate synthase, respectively. Figure 3. Branched chain amino acid and pantothenate synthesis. TD and ALS are the enzymes threonine deaminase and acetolactate synthase, respectively.
Fig. 1. Rate of pantothenate synthesis during growth of E. coli (69,71) lower curve, bacterial density upper curve, log bacterial... Fig. 1. Rate of pantothenate synthesis during growth of E. coli (69,71) lower curve, bacterial density upper curve, log bacterial...
Biosynthesis of coen2yme A (CoA) ia mammalian cells incorporates pantothenic acid. Coen2yme A, an acyl group carrier, is a cofactor for various en2ymatic reactions and serves as either a hydrogen donor or an acceptor. Pantothenic acid is also a stmctural component of acyl carrier protein (AGP). AGP is an essential component of the fatty acid synthetase complex, and is therefore requited for fatty acid synthesis. Free pantothenic acid is isolated from hver, and is a pale yeUow, viscous, and hygroscopic oil. [Pg.56]

Despite the progress made in the stereoselective synthesis of (R)-pantothenic acid since the mid-1980s, the commercial chemical synthesis still involves resolution of racemic pantolactone. Recent (ca 1997) synthetic efforts have been directed toward developing a method for enantioselective synthesis of (R)-pantolactone by either chemical or microbial reduction of ketopantolactone. Microbial reduction of ketopantolactone is a promising area for future research. [Pg.63]

In bacteria and plants, the individual enzymes of the fatty acid synthase system are separate, and the acyl radicals are found in combination with a protein called the acyl carrier protein (ACP). However, in yeast, mammals, and birds, the synthase system is a multienzyme polypeptide complex that incorporates ACP, which takes over the role of CoA. It contains the vitamin pantothenic acid in the form of 4 -phosphopan-tetheine (Figure 45-18). The use of one multienzyme functional unit has the advantages of achieving the effect of compartmentalization of the process within the cell without the erection of permeability barriers, and synthesis of all enzymes in the complex is coordinated since it is encoded by a single gene. [Pg.173]

Pantothenic acid Functional part of CoA and acyl carrier protein fatty acid synthesis and metabolism ... [Pg.482]

Rice bran is the richest natural source of B-complex vitamins. Considerable amounts of thiamin (Bl), riboflavin (B2), niacin (B3), pantothenic acid (B5) and pyridoxin (B6) are available in rice bran (Table 17.1). Thiamin (Bl) is central to carbohydrate metabolism and kreb s cycle function. Niacin (B3) also plays a key role in carbohydrate metabolism for the synthesis of GTF (Glucose Tolerance Factor). As a pre-cursor to NAD (nicotinamide adenine dinucleotide-oxidized form), it is an important metabolite concerned with intracellular energy production. It prevents the depletion of NAD in the pancreatic beta cells. It also promotes healthy cholesterol levels not only by decreasing LDL-C but also by improving HDL-C. It is the safest nutritional approach to normalizing cholesterol levels. Pyridoxine (B6) helps to regulate blood glucose levels, prevents peripheral neuropathy in diabetics and improves the immune function. [Pg.357]

BaddUey J. Thain, E.M. (1951) The Synthesis of Pantothenic Acid-2 and -4 Phosphates as Possible Degradation Products of Coenzyme A. Journal of the Chemical Society, 246-251. [Pg.190]

The hydrogenation of ketones with O or N functions in the a- or / -position is accomplished by several rhodium compounds [46 a, b, e, g, i, j, m, 56], Many of these examples have been applied in the synthesis of biologically active chiral products [59]. One of the first examples was the asymmetric synthesis of pantothenic acid, a member of the B complex vitamins and an important constituent of coenzyme A. Ojima et al. first described this synthesis in 1978, the most significant step being the enantioselective reduction of a cyclic a-keto ester, dihydro-4,4-dimethyl-2,3-furandione, to D-(-)-pantoyl lactone. A rhodium complex derived from [RhCl(COD)]2 and the chiral pyrrolidino diphosphine, (2S,4S)-N-tert-butoxy-carbonyl-4-diphenylphosphino-2-diphenylphosphinomethyl-pyrrolidine ((S, S) -... [Pg.23]

Group-transfer reactions often involve vitamins3, which humans need to have in then-diet, since we are incapable of realizing their synthesis. These include nicotinamide (derived from the vitamin nicotinic acid) and riboflavin (vitamin B2) derivatives, required for electron transfer reactions, biotin for the transfer of C02, pantothenate for acyl group transfer, thiamine (vitamin as thiamine pyrophosphate) for transfer of aldehyde groups and folic acid (as tetrahydrofolate) for exchange of one-carbon fragments. Lipoic acid (not a vitamin) is both an acyl and an electron carrier. In addition, vitamins such as pyridoxine (vitamin B6, as pyridoxal phosphate), vitamin B12 and vitamin C (ascorbic acid) participate as cofactors in an important number of metabolic reactions. [Pg.86]

It is now well known that pantothenic acid is a part of coenzyme A, a substance of unusual biochemical significance in that it is intimately concerned with the utilization of carbohydrates, and both the utilization and synthesis of fats, sterols, steriod hormones, etc. A partial failure of any of the processes in which it is concerned may not produce a specific lesion, but may nevertheless be a serious detriment to the individual experiencing it. [Pg.201]

Pantothenic acid (vitamin B5) is both present in many nutrientcients and it is also produced by intestinal bacteria. Deficiency is therefore thought to be unlikely. Its active form, 4-phosphopantetheine, is an element of both coenzyme-A and acyl-carrier protein and thus participates in fatty acid synthesis and in the posttranslational modification of proteins. Acetylcoenzyme-A is important for the synthesis of the neurotransmitter acetylcholine. [Pg.474]

FIGURE 21-4 Acyl carrier protein (ACP). The prosthetic group is 4 -phosphopantetheine, which is covalently attached to the hydroxyl group of a Ser residue in ACP. Phosphopantetheine contains the B vitamin pantothenic acid, also found in the coenzyme A molecule. Its —SH group is the site of entry of malonyl groups during fatty acid synthesis. [Pg.791]

The remaining series of reactions of fatty acid synthesis in eukary-l otes is catalyzed by the multifunctional, dimeric enzyme, fatty acid synthase. Each fatty acid synthase monomer is a multicatalytic polypeptide with seven different enzymic activities plus a domain that covalently binds a molecule of 4 -phosphopantetheine. [Note 4-Phosphopantetheine, a derivative of the vitamin pantothenic add (see p. 379), carries acetyl and acyl units on its terminal thiol (-SH)j group during fatty acid synthesis. It also is a component of 00-enzyme A.] In prokaryotes, fatty acid synthase is a multienzyme complex, and the 4 -phosphopantetheine domain is a separate protein, referred to as the acyl carrier protein (ACP). ACP is used below to refer to the phosphopantetheine-binding domain of the eukaryotic fatty acid synthase molecule. The reaction numbers in1 brackets below refer to Figure 16.9. [Note The enzyme activities listed are actually separate catalytic domains present in each mulf-1 catalytic fatty acid synthase monomer.]... [Pg.182]

Pantothenic acid, as a component of coenzyme A, is involved with the release of energy during gluconeogenesis, in the synthesis and de-... [Pg.367]

Vitamins and Minerals. Milk is a rich source of vitamins and other organic substances that stimulate microbial growth. Niacin, biotin, and pantothenic acid are required for growth by lactic streptococci (Reiter and Oram 1962). Thus the presence of an ample quantity of B-complex vitamins makes milk an excellent growth medium for these and other lactic acid bacteria. Milk is also a good source of orotic acid, a metabolic precursor of the pyrimidines required for nucleic acid synthesis. Fermentation can either increase or decrease the vitamin content of milk products (Deeth and Tamime 1981 Reddy et al. 1976). The folic acid and vitamin Bi2 content of cultured milk depends on the species and strain of culture used and the incubation conditions (Rao et al. 1984). When mixed cultures are used, excretion of B-complex vita-... [Pg.656]

Enterobacter aerogenes, B. subtilis, P. fluorescens, and Serratia marces-cens produce acetoin by decarboxylation of a-acetolactate. However, yeasts and E. coli form acetoin from the acetaldehyde-TPP complex and free acetaldehyde (Rodopulo et al 1976). These organisms do not decarboxylate a-acetolactate, but use it to produce valine and pantothenic acid. In lactic acid bacteria, a-acetolactate is not used for valine or pantothenic acid synthesis, since these substances are required for growth (Law et al. 1976B Reiter and Oram 1962). In those microorganisms which can synthesize valine, this amino acid inhibits a-acetolactate synthesis (Rodopulo et al 1976). [Pg.687]

Two aliphatic acids possess, for grasses, many of the growth-distortion and toxicity effects associated with the synthetic auxins on dicotyledonous plants. Trichloroacetic acid and 2,2-dichloropropionic acid (dalapon), as the sodium salts, have been called grass "hormones or auxins, although Wilkinson184 could find no growth stimulation at low concentrations, and described dalapon as an antiauxin from its interference with indole-3-acetic acid effects. The herbicidal properties of trichloroacetate do not depend on its protein-denaturing ability, and those of 2,2-dichloropropionic acid involve, at least indirectly, the synthesis of pantothenic acid. [Pg.402]


See other pages where Pantothenic synthesis is mentioned: [Pg.45]    [Pg.243]    [Pg.404]    [Pg.439]    [Pg.45]    [Pg.243]    [Pg.404]    [Pg.439]    [Pg.56]    [Pg.61]    [Pg.62]    [Pg.63]    [Pg.933]    [Pg.212]    [Pg.1304]    [Pg.279]    [Pg.279]    [Pg.61]    [Pg.536]    [Pg.120]    [Pg.620]    [Pg.160]    [Pg.368]    [Pg.1382]   
See also in sourсe #XX -- [ Pg.60 , Pg.61 ]




SEARCH



Pantothenate

© 2024 chempedia.info