Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium salts catalysts

Aryl halides react readily with carbon monoxide, in the presence of hydroxide and palladium salt catalysts in DMF solution to give aryl carboxylates879. The reaction also occurs under photostimulation with either a cobalt880,881 or a nickel882 catalyst. Under higher pressures of carbon monoxide, aryl iodides give a-ketoacids883. [Pg.754]

Under some conditions, diaryl ketones are formed in moderate yield from aryl-mercuric salts and carbon monoxide with a palladium salt catalyst °>. [Pg.59]

Palladium catalysts are useful alternatives to Adams platinum oxide catalyst described in Section 111,150. The nearest equivalent to the latter is palladium chloride upon carbon and it can be stored indefinitely the palladium salt is reduced to the metal as required ... [Pg.949]

Other processes described in the Hterature for the production of malonates but which have not gained industrial importance are the reaction of ketene [463-51-4] with carbon monoxide in the presence of alkyl nitrite and a palladium salt as a catalyst (35) and the reaction of dichioromethane [75-09-2] with carbon monoxide in the presence of an alcohol, dicobalt octacarbonyl, and an imida2ole (36). [Pg.467]

Palladium catalysts have been prepared by fusion of palladium chloride in sodium nitrate to give palladium oxide by reduction of palladium salts by alkaline formaldehyde or sodium formate, by hydrazine and by the reduction of palladium salts with hydrogen.The metal has been prepared in the form of palladium black, and in colloidal form in water containing a protective material, as well as upon supports. The supports commonly used are asbestos, barium carbonate, ... [Pg.81]

Then 21.89 g of the hydrochloride salt was dissolved in 600 ml of 80% aqueous ethanol. With the addition of a palladium carbon catalyst, this solution was hydrogenated at room temperature under a hydrogen pressure of about 1.1 atmospheres. After 2 mols hydrogen had been absorbed, the catalyst was filtered off and the filtrate was evaporated in vacuo until crystallization occurred. Then the crystals were dissolved by heating in the smallest possible quantity of water and after cooling, the crystallized substance was filtered off, washed with water and dried in vacuo. The yield was 6.80 g, i.e., 39% of the theoretically possible yield. The resultant product recrystallized from water melted at 203° to 204°C. [Pg.855]

A methyl group can be introduced into an aromatic ring by treatment of diazonium salts with tetramethyltin and a palladium acetate catalyst." The reaction has been performed with Me, Cl, Br, and NO2 groups on the ring. A vinylic group can be introduced with CH2=CHSnBu3. [Pg.937]

Palladium salts are able to catalyse diyne carbonylation, so the reaction can be performed at room temperature under 1 atm of carbon monoxide. Thiourea (H2NCSNH2), which is added to stabilise the Pd catalyst (Scheme 34), is described as the best ligand for the efficiency of this reaction [124]. [Pg.253]

Selective aromatic functionalization has been a permanent object of research since the ninenteenth century. Catalysis has offered a powerful tool to achieve this goal. Over the years we have worked out a complex catalytic system consisting of an inorganic compound such as a palladium salt and an organic molecule containing a strained double bond such as norbomene (1,2). We have seen that these two catalysts cooperatively react with an aromatic iodide, an alkyl iodide and a terminal olefin. The following equation reports an example (L = solvent and/or olefin) (3). [Pg.449]

Palladium-catalyzed carbon-carbon cross-coupling reactions are among the best studied reactions in recent decades since their discovery [102, 127-130], These processes involve molecular Pd complexes, and also palladium salts and ligand-free approaches, where palladium(O) species act as catalytically active species [131-135]. For example, the Heck reaction with aryl iodides or bromides is promoted by a plethora of Pd(II) and Pd(0) sources [128, 130], At least in the case of ligand-free palladium sources, the involvement of soluble Pd NPs as a reservoir for catalytically active species seems very plausible [136-138], Noteworthy, it is generally accepted that the true catalyst in the reactions catalyzed by Pd(0) NPs is probably molecular zerovalent species detached from the NP surface that enter the main catalytic cycle and subsequently agglomerate as N Ps or even as bulk metal. [Pg.17]

Until recently, the hydroformylation using palladium had been scarcely explored as the activity of palladium stayed behind that of more active platinum complexes. The initiating reagents are often very similar to those of platinum, i.e., divalent palladium salts, which under the reaction conditions presumably form monohydrido complexes of palladium(II). A common precursor is (39). The mechanism for palladium catalysts is, therefore, thought to be the same as that for platinum. New cationic complexes of palladium that are highly active as hydroformylation catalysts were discovered by Drent and co-workers at Shell and commercial applications may be expected, involving replacement of cobalt catalysts. [Pg.153]

Hydroxycarbonylation and alkoxycarbonylation of alkenes catalyzed by metal catalyst have been studied for the synthesis of acids, esters, and related derivatives. Palladium systems in particular have been popular and their use in hydroxycarbonylation and alkoxycarbonylation reactions has been reviewed.625,626 The catalysts were mainly designed for the carbonylation of alkenes in the presence of alcohols in order to prepare carboxylic esters, but they also work well for synthesizing carboxylic acids or anhydrides.137 627 They have also been used as catalysts in many other carbonyl-based processes that are of interest to industry. The hydroxycarbonylation of butadiene, the dicarboxylation of alkenes, the carbonylation of alkenes, the carbonylation of benzyl- and aryl-halide compounds, and oxidative carbonylations have been reviewed.6 8 The Pd-catalyzed hydroxycarbonylation of alkenes has attracted considerable interest in recent years as a way of obtaining carboxylic acids. In general, in acidic media, palladium salts in the presence of mono- or bidentate phosphines afford a mixture of linear and branched acids (see Scheme 9). [Pg.188]

Unlike nickel catalysts, palladium catalysts undergo neither cyclodimerization nor cyclotrimerization to form COD or CDT. Only one paper by Chepaikin and Khidekel reported that a mixture of divinylcyclobu-tanes was obtained from butadiene using palladium salts with noncom-plexing anions such as perchlorate and boron tetrafluoride (15). This is a big difference between the catalyses of palladium and nickel. [Pg.145]

It is worth noting, however, that chiral phosphine-palladium complexes generated from palladium salts and BINAP or MOP cannot be used for this oxidation because phosphines will be readily oxidized to phosphine oxides under the reaction conditions, leading to the deactivation of the catalyst. As reaction without the chiral catalyst will give a racemic product, this deactivation of the catalyst will cause a drop in the enantioselectivity of the whole process. [Pg.470]

As the last example of C-C bond-formation reactions catalyzed by alkaline earth hydroxides, we mention the recently reported a-arylation of diethyl malonate in the presence of a palladium catalyst and a base in a separate phase 299). The arylation of carbonyl compounds is a carbon-carbon coupling reaction between an aryl halide and an enolate, which is usually catalyzed by palladium salts in the presence of an appropriate base (300,301). The arylation of diethyl malonate with bromobenzene (Scheme 48) was performed with tetrachloropalladate as the... [Pg.293]

An alternative scheme to simultaneous formation of acetaldehyde and acetic anhydride could entail the carbonylation of methyl acetate to acetic anhydride which is subsequently reduced to acetaldehyde and acetic acid. The reaction of acetaldehyde with excess anhydride would form EDA. In fact, Fenton has described production of EDA by the reduction of acetic anhydride using both rhodium and palladium salts as catalysts when modified with triphenylphosphine (26). Two possible mechanisms for the reduction are postulated in equation 16. [Pg.144]

Palladium containing homogeneous polymeric catalysts PEO-b-P2VP and PS-b-P4VP were synthesized by the immobilization of appropriate palladium salts into vinyl pyridine cores of PEO-b-P2VP and PS-b-P4VP micelles, respectively, followed by the reduction of the palladium. [Pg.179]


See other pages where Palladium salts catalysts is mentioned: [Pg.659]    [Pg.659]    [Pg.294]    [Pg.79]    [Pg.1230]    [Pg.576]    [Pg.80]    [Pg.545]    [Pg.1035]    [Pg.161]    [Pg.37]    [Pg.388]    [Pg.1052]    [Pg.512]    [Pg.514]    [Pg.519]    [Pg.277]    [Pg.186]    [Pg.78]    [Pg.139]    [Pg.45]    [Pg.566]    [Pg.260]    [Pg.158]    [Pg.419]    [Pg.460]    [Pg.809]    [Pg.821]   


SEARCH



Alkenes palladium salt catalyst

Carbonylation palladium salt catalyst

Palladium catalysts catalyst

Palladium salt

© 2024 chempedia.info