Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium complexes addition reactions

Addition of hydrogen cyanide to a terminal alkene is catalyzed principally by nickel and palladium complexes. The reaction may give either linear or branched products (equation 161). The reaction is of considerable industrial interest. A review on the earlier work is available.599... [Pg.296]

Addition of water to dienes is catalyzed by palladium complexes. The reaction has been used for synthesizing unsaturated alcohols and ethers from aliphatic conjugated C4 and Cg olefins 248). In particular, the hydration of butadiene with water in the presence of bis(2,4-pentane-dionato)palladium and triphenylphosphine gave 2,7-octadien-l-ol, l,7-octadien-3-ol, and 1,3,5,7-octatetraene 18). The reaction was accelerated by carbon dioxide. Compounds Pd(PPh3)4 and Pd(02C0)-(PPh3)2 were also effective. [Pg.326]

Examples of palladium- and rhodium-catalyzed hydroaminations of alkynes are shown in Equations 16.90-16.92 and Table 16.9. The reaction in Equation 16.90 is one of many examples of intramolecular hydroaminations to form indoles that are catalyzed by palladium complexes. The reaction in Equation 16.91 shows earlier versions of this transformation to form pyrroles by the intramolecular hydroamination of amino-substituted propargyl alcohols. More recently, intramolecular hydroaminations of alkynes catalyzed by complexes of rhodium and iridium containing nitrogen donor ligands have been reported, and intermolecular hydroaminations of terminal alkynes at room temperature catalyzed by the combination of a cationic rhodium precursor and tricyclohexylphosphine are known. The latter reaction forms the Markovnikov addition product, as shown in Equation 16.92 and Table 16.9. These reactions catalyzed by rhodium and iridium complexes are presumed to occur by nucleophilic attack on a coordinated alkyne. [Pg.711]

Nucleophilic attack of coordinated alkynes is another synthetic approach toward alkenylpalladium compounds. This step plays a role in several palladium-catalyzed addition reactions. The palladium-catalyzed cyclization of 6-aminohex-l-yne gives rise to putative ammonium-alkenylpalladium(ii) complexes. ... [Pg.278]

Addition of several organomercury compounds (methyl, aryl, and benzyl) to conjugated dienes in the presence of Pd(II) salts generates the ir-allylpalladium complex 422, which is subjected to further transformations. A secondary amine reacts to give the tertiary allylic amine 423 in a modest yield along with diene 424 and reduced product 425[382,383]. Even the unconjugated diene 426 is converted into the 7r-allyllic palladium complex 427 by the reaction of PhHgCI via the elimination and reverse readdition of H—Pd—Cl[383]. [Pg.82]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

It was found [99JCS(PI )3713] that, in all cases, the formation of the deiodinated products 38 and 39 was accompanied by formation of the diynes 40 which were isolated in 60-90% yield. The authors believed that the mechanism of deiodination may be represented as an interaction ofbis(triphenylphosphine)phenylethynyl-palladium(II) hydride with the 4-iodopyrazole, giving rise to the bisftriphenylphos-phine)phenylethynyl palladium(II) iodide complex which, due to the reductive elimination of 1 -iodoalkyne and subsequent addition of alk-1 -yne, converts into the initial palladium complex. Furthermore, the interaction of 1-iodoalkynes with the initial alkyne in the presence of Cul and EtsN (the Cadiot-Chodkiewicz reaction) results in the formation of the observed disubstituted butadiynes 40 (Scheme 51). [Pg.27]

The mechanism of action of the cyanation reaction is considered to progress as follows an oxidative addition reaction occurs between the aryl halide and a palladium(O) species to form an arylpalladium halide complex which then undergoes a ligand exchange reaction with CuCN thus transforming to an arylpalladium cyanide. Reductive elimination of the arylpalladium cyanide then gives the aryl cyanide. [Pg.26]

Oxidative addition—Reaction of the carbon electrophile with palladium-(0) complex 5 to give a palladium-(II) complex 6. [Pg.265]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

In the direct coupling reaction (Scheme 30), it is presumed that a coordinatively unsaturated 14-electron palladium(o) complex such as bis(triphenylphosphine)palladium(o) serves as the catalytically active species. An oxidative addition of the organic electrophile, RX, to the palladium catalyst generates a 16-electron palladium(n) complex A, which then participates in a transmetalation with the organotin reagent (see A—>B). After facile trans- cis isomerization (see B— C), a reductive elimination releases the primary organic product D and regenerates the catalytically active palladium ) complex. [Pg.592]

Substantially more work has been done on reactions of square-planar nickel, palladium, and platinum alkyl and aryl complexes with isocyanides. A communication by Otsuka et al. (108) described the initial work in this area. These workers carried out oxidative addition reactions with Ni(CNBu )4 and with [Pd(CNBu )2] (. In a reaction of the latter compound with methyl iodide the complex, Pd(CNBu )2(CH3)I, stable as a solid but unstable in solution, was obtained. This complex when dissolved in toluene proceeds through an intermediate believed to be dimeric, which then reacts with an additional ligand L (CNBu or PPh3) to give PdL(CNBu )- C(CH3)=NBu I [Eq. (7)]. [Pg.31]

Although this work has so far been almost entirely devoted to platinum and palladium complexes, these addition reactions are nowviewed asageneral chemical phenomenon. However it may be appropriate to view this generality with caution, until further work appears. [Pg.42]

Since the initial report on the addition reactions of palladium(II) and platinum(II) isocyanide complexes by Badley et al. (S), a rather substantial number of further examples have been reported. These are summarized in Table II. [Pg.45]

A large amount of the work on palladium isocyanide complexes has been mentioned earlier, in discussions on insertion reactions 30,74,108,169,170) and on addition reactions of coordinated isocyanides 25, 33, 34, 49) the reactions of [Pd(CNBu )2] with oxygen 107) and with various olefins 29, 110) were noted. [Pg.74]

The intramolecular addition of the O-H bond to alkynes catalyzed by palladium complexes has been developed by K. Utimoto et al. (Eq. 6.59) [104]. An alkynyl alcohol can be converted to a cyclic alkenyl ether in the presence of a catalytic amount of [PdCl2(PhCN)2 or [PdCl2(MeCN)2] in ether or THE at room temperature. When the reaction was carried out in MeCN-H20 under reflux in the presence of a catalytic amount of PdCl2, hydration of the acetylenic alcohol occurred and the ketoalcohol was obtained in good yield instead. [Pg.206]


See other pages where Palladium complexes addition reactions is mentioned: [Pg.95]    [Pg.144]    [Pg.491]    [Pg.5]    [Pg.469]    [Pg.201]    [Pg.666]    [Pg.367]    [Pg.397]    [Pg.182]    [Pg.35]    [Pg.1166]    [Pg.87]    [Pg.272]    [Pg.567]    [Pg.576]    [Pg.578]    [Pg.584]    [Pg.174]    [Pg.338]    [Pg.207]    [Pg.56]    [Pg.145]    [Pg.186]    [Pg.204]    [Pg.220]   
See also in sourсe #XX -- [ Pg.440 ]




SEARCH



Addition reactions complexes

Complexing additives

Palladium complexes reactions

Palladium®) addition reactions

© 2024 chempedia.info