Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium butadiene

Formic acid behaves differently. The expected octadienyl formate is not formed. The reaction of butadiene carried out in formic acid and triethylamine affords 1,7-octadiene (41) as the major product and 1,6-octadiene as a minor product[41-43], Formic acid is a hydride source. It is known that the Pd hydride formed from palladium formate attacks the substituted side of tt-allylpalladium to form the terminal alkene[44] (see Section 2.8). The reductive dimerization of isoprene in formic acid in the presence of Et3N using tri(i)-tolyl)phosphine at room temperature afforded a mixture of dimers in 87% yield, which contained 71% of the head-to-tail dimers 42a and 42b. The mixture was treated with concentrated HCl to give an easily separable chloro derivative 43. By this means, a- and d-citronellol (44 and 45) were pre-pared[45]. [Pg.430]

In a related process, 1,4-dichlorobutene was produced by direct vapor-phase chlorination of butadiene at 160—250°C. The 1,4-dichlorobutenes reacted with aqueous sodium cyanide in the presence of copper catalysts to produce the isomeric 1,4-dicyanobutenes yields were as high as 95% (58). The by-product NaCl could be recovered for reconversion to Na and CI2 via electrolysis. Adiponitrile was produced by the hydrogenation of the dicyanobutenes over a palladium catalyst in either the vapor phase or the Hquid phase (59,60). The yield in either case was 95% or better. This process is no longer practiced by DuPont in favor of the more economically attractive process described below. [Pg.220]

Another alternative method to produce sebacic acid iavolves a four-step process. First, butadiene [106-99-0] is oxycarbonylated to methyl pentadienoate which is then dimerized, usiag a palladium catalyst, to give a triply unsaturated dimethyl sebacate iatermediate. This unsaturated iatermediate is hydrogenated to dimethyl sebacate which can be hydrolyzed to sebacic acid. Small amounts of branched chain isomers are removed through solvent crystallizations giving sebacic acid purities of greater than 98% (66). [Pg.63]

Troublesome amounts of C and Q acetylenes are also produced in cracking. In the butadiene and isoprene recovery processes, the acetylenes in the feed are either hydrogenated, polymerized, or extracted and burned. Acetylene hydrogenation catalyst types include palladium on alumina, and some non-noble metals. [Pg.110]

When the products are partially or totally miscible in the ionic phase, separation is much more complicated (Table 5.3-2, cases c-e). One advantageous option can be to perform the reaction in one single phase, thus avoiding diffusional limitation, and to separate the products in a further step by extraction. Such technology has already been demonstrated for aqueous biphasic systems. This is the case for the palladium-catalyzed telomerization of butadiene with water, developed by Kuraray, which uses a sulfolane/water mixture as the solvent [17]. The products are soluble in water, which is also the nucleophile. The high-boiling by-products are extracted with a solvent (such as hexane) that is immiscible in the polar phase. This method... [Pg.264]

Chemical reduction is used extensively nowadays for the deposition of nickel or copper as the first stage in the electroplating of plastics. The most widely used plastic as a basis for electroplating is acrylonitrile-butadiene-styrene co-polymer (ABS). Immersion of the plastic in a chromic acid-sulphuric acid mixture causes the butadiene particles to be attacked and oxidised, whilst making the material hydrophilic at the same time. The activation process which follows is necessary to enable the subsequent electroless nickel or copper to be deposited, since this will only take place in the presence of certain catalytic metals (especially silver and palladium), which are adsorbed on to the surface of the plastic. The adsorbed metallic film is produced by a prior immersion in a stannous chloride solution, which reduces the palladium or silver ions to the metallic state. The solutions mostly employed are acid palladium chloride or ammoniacal silver nitrate. The etched plastic can also be immersed first in acidified palladium chloride and then in an alkylamine borane, which likewise form metallic palladium catalytic nuclei. Colloidal copper catalysts are of some interest, as they are cheaper and are also claimed to promote better coverage of electroless copper. [Pg.436]

Some companies are successfully integrating chemo- and biocatalytic transformations in multi-step syntheses. An elegant example is the Lonza nicotinamide process mentioned earlier (.see Fig. 2.34). The raw material, 2-methylpentane-1,5-diamine, is produced by hydrogenation of 2-methylglutaronitrile, a byproduct of the manufacture of nylon-6,6 intermediates by hydrocyanation of butadiene. The process involves a zeolite-catalysed cyciization in the vapour phase, followed by palladium-catalysed dehydrogenation, vapour-pha.se ammoxidation with NH3/O2 over an oxide catalyst, and, finally, enzymatic hydrolysis of a nitrile to an amide. [Pg.54]

In the case of palladium particles supported on magnesium oxide, Heiz and his colleagues have shown,29 in an elegant study, a correlation between the number of palladium atoms in a cluster and the selectivity for the conversion of acetylene to benzene, butadiene and butane, whereas in the industrially significant area of catalytic hydrodesulfurisation, the Aarhus group,33 with support from theory, have pinpointed by STM metallic edge states as the active sites in the MoS2 catalysts. [Pg.176]

Nickel(O) complexes are extremely effective for the dimerization and oligomerization of conjugated dienes [8,9]. Two molecules of 1,3-butadiene readily undergo oxidative cyclization with a Ni(0) metal to form bis-allylnickel species. Palladium(O) complexes also form bis-allylpalladium species of structural similarity (Scheme 2). The bis-allylpalladium complexes show amphiphilic reactivity and serve as an allyl cation equivalent in the presence of appropriate nucleophiles, and also serve as an allyl anion equivalent in the presence of appropriate electrophiles. Characteristically, the bis-allylnickel species is known to date only as a nucleophile toward carbonyl compounds (Eq. 1) [10,11],... [Pg.183]

Besides the formation of carbenes from diazo compounds and the hydroformyla-tion, rhodium (as described previously for palladium) has also been used as catalyst in domino processes involving cycloadditions. Thus, Evans and coworkers developed a new Rh(I)-catalyzed [4+2+2] cycloaddition for the synthesis of eight-membered rings as 6/2-105 using a lithium salt of N-tosylpropargylamines as 6/2-104, allyl carbonates and 1,3-butadiene (Scheme 6/2.22) [221]. The first step is an al-... [Pg.437]

The palladium-catalyzed linear telomerization of 1,3-butadienes provides a useful method for the preparation of functionalized alkenes. A proposed catalytic cycle for the palladium-catalyzed... [Pg.138]

Scheme 5.5. Catalytic cycle in the palladium-catalyzed telomerization of 1,3-butadiene... Scheme 5.5. Catalytic cycle in the palladium-catalyzed telomerization of 1,3-butadiene...
Extension to carbocyclization of butadiene telomerization using nitromethane as a trapping reagent is reported (Eq. 5.48).72 Palladium-catalyzed carbo-annulation of 1,3-dienes by aryl halides is also reported (Eq. 5.49).73 The nitro group is removed by radical denitration (see Section 7.2), or the nitroalkyl group is transformed into the carbonyl group via the Nef reaction (see Section 6.1). [Pg.139]

Hydroxycarbonylation and alkoxycarbonylation of alkenes catalyzed by metal catalyst have been studied for the synthesis of acids, esters, and related derivatives. Palladium systems in particular have been popular and their use in hydroxycarbonylation and alkoxycarbonylation reactions has been reviewed.625,626 The catalysts were mainly designed for the carbonylation of alkenes in the presence of alcohols in order to prepare carboxylic esters, but they also work well for synthesizing carboxylic acids or anhydrides.137 627 They have also been used as catalysts in many other carbonyl-based processes that are of interest to industry. The hydroxycarbonylation of butadiene, the dicarboxylation of alkenes, the carbonylation of alkenes, the carbonylation of benzyl- and aryl-halide compounds, and oxidative carbonylations have been reviewed.6 8 The Pd-catalyzed hydroxycarbonylation of alkenes has attracted considerable interest in recent years as a way of obtaining carboxylic acids. In general, in acidic media, palladium salts in the presence of mono- or bidentate phosphines afford a mixture of linear and branched acids (see Scheme 9). [Pg.188]

Aliphatic aldoximes and ketoximes undergo palladium-catalyzed O- and N-alkylation by butadiene in reactions that presumably occur via jr-allyl... [Pg.368]

The palladium-catalyzed cooligomerization of butadiene with aldehydes provides a convenient synthesis of 2,5-divinyltetrahydropyran isomers... [Pg.386]

Likewise, an efficient one-pot multicomponent synthesis of annelated 2-amino pyridines (e.g., 17) utilizing [4+2] cycloadditions has been described <06JOC3494>. The process involves the in situ generation of 1-aza-1,3-butadiene from a palladium-catalyzed coupling-isomerization reaction of aryl halides (e.g., 18) with propargyl V-tosylamines (e.g., 19). The resulting butadiene then undergoes cycloadditions with V.S -ketene acetals (e.g., 20) to form annelated pyridines (e.g., 17). [Pg.316]

COMPARISON OF NICKEL- AND PALLADIUM-CATALYZED REACTIONS OF BUTADIENE... [Pg.141]

Polybutadiene and polyisoprene are produced and used mainly as synthetic rubber on an industrial scale by using transition metal catalysts, especially titanium- and nickel-based ones. By contrast, only minor attention has been paid to the palladium-catalyzed polymerization of butadiene. A mixture of 1,2-polybutadiene and trans- and c/s-l, 4-polybutadiene was obtained by using PdCl2 as a catalyst (7, 2). [Pg.142]

Similar studies on the reactions of butadiene and bis(ir-allyl)palladium were carried out by Wilke and co-workers (4). Unlike the reactions with nickel complexes, no cyclization took place, and 1,6,10-dodecatriene... [Pg.143]

Next, the effect of ligand of palladium complex on the reaction of butadiene was studied. Only vinylcyclohexene (4) was obtained by the reaction of butadiene at 90°C using bis(7r-allyl)palladium (13) and tri-chlorophosphine (1 1). [Pg.144]

After that, studies on the palladium-catalyzed reactions of conjugated dienes attracted little attention. They have only been reexamined since the late 1960 s. The scope of the reaction of butadiene catalyzed by palladium complexes has gradually been established. The catalysis by palladium is different from those of other transition metals. Although palladium is located below nickel in the periodic table, the catalytic... [Pg.144]

Unlike nickel catalysts, palladium catalysts undergo neither cyclodimerization nor cyclotrimerization to form COD or CDT. Only one paper by Chepaikin and Khidekel reported that a mixture of divinylcyclobu-tanes was obtained from butadiene using palladium salts with noncom-plexing anions such as perchlorate and boron tetrafluoride (15). This is a big difference between the catalyses of palladium and nickel. [Pg.145]


See other pages where Palladium butadiene is mentioned: [Pg.294]    [Pg.292]    [Pg.342]    [Pg.516]    [Pg.173]    [Pg.139]    [Pg.225]    [Pg.558]    [Pg.570]    [Pg.271]    [Pg.7]    [Pg.214]    [Pg.308]    [Pg.322]    [Pg.9]    [Pg.85]    [Pg.220]    [Pg.88]    [Pg.167]    [Pg.77]    [Pg.98]    [Pg.98]    [Pg.141]    [Pg.143]    [Pg.144]    [Pg.145]    [Pg.145]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



1.3- Butadiene palladium catalysts

Butadiene complexes with palladium

Butadiene hydrogenation, palladium

Butadiene hydrogenation, palladium catalyzed

Butadiene palladium complexes

Butadiene palladium-catalysed reactions

Carbon dioxide palladium-catalyzed reaction with butadiene

Palladium butadiene with

Palladium-Catalyzed Reactions of Butadiene and Isoprene

Palladium-catalyzed reactions of butadiene

© 2024 chempedia.info