Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium acetate allylations

Bromination of the diphenyl indole derivative 316 with bromine in DMF or trimethylammonium bromide afforded the 7-bromo derivative 317. Reaction with allyl bromide or its derivatives gave A-allyl derivatives 318 that upon cyclization with palladium acetate gave 7,9-dimethoxy-l,2-diphenylpyrrolo[3,2,l-// ]quinoline derivatives 319 (92T7601) (Scheme 57). [Pg.111]

Another difference between the two mechanisms is that the former involves 1,2 and the latter 1,3 shifts. The isomerization of 1-butene by rhodium(I) is an example of a reaction that takes place by the metal hydride mechanism, while an example of the TT-allyl complex mechanism is found in the Fe3(CO)i2 catalyzed isomerization of 3-ethyl-l-pentene. " A palladium acetate or palladium complex catalyst was used to convert alkynones RCOCSCCH2CH2R to 2,4-alkadien-l-ones RCOCH= CHCH = CHCHR. ... [Pg.773]

Allylic carbonates are better electrophiles than allylic acetates for the palladium-catalyzed allylic alkylation.77 Reaction of Eq. 5.54 shows the selective allylic alkylation of a-nitro ester with allylic carbonates without affecting allylic acetates.78... [Pg.141]

Allyl acetates are more commonly used as electrophiles for the palladium-catalyzed allylic alkylation than allylic nitro compounds.20 However, the reaction of allylic nitro compounds has found wider applications. Allylic nitro compounds are readily available by nitration of alkenes. The regio- and stereoselective introduction of electrophiles and nucleophiles into alkenes is possible as outlined in Eq. 7.19. In fact, this strategy is applied to the synthesis of terpenoids.21... [Pg.186]

Dialkylindolines and 1,3-dialkylindoles are formed in poor yield (<10%) from the reaction of ethyl- or phenymagnesium bromide with 2-chloro-N-methyl-N-allylaniline in the presence of catalytic quantities of (bistriphenylphosphine)nickel dichloride.72 In a modification of this procedure, the allyl derivatives can be converted by stoichiometric amounts of tetrakis(triphenylphosphine)nickel into 1,3-dialkylindoles in moderate yield72 (Scheme 43) an initial process of oxidative addition and ensuing cyclization of arylnickel intermediates is thought to occur. In contrast to the nickel system,72 it has proved possible to achieve the indole synthesis by means of catalytic quantities of palladium acetate.73 It is preferable to use... [Pg.340]

Another route to the diol monomer is provided by hydroformylation of allyl alcohol or allyl acetate. Allyl acetate can be produced easily by the palladium-catalyzed oxidation of propylene in the presence of acetic acid in a process similar to commercial vinyl acetate production. Both cobalt-and rhodium-catalyzed hydroformylations have received much attention in recent patent literature (83-86). Hydroformylation with cobalt carbonyl at 140°C and 180-200 atm H2/CO (83) gave a mixture of three aldehydes in 85-99% total yield. [Pg.40]

Palladium-catalyzed oxidation of 1,4-dienes has also been reported. Thus, Brown and Davidson28 obtained the 1,3-diacetate 25 from oxidation of 1,4-cyclohexadiene by ben-zoquinone in acetic acid with palladium acetate as the catalyst (Scheme 3). Presumably the reaction proceeds via acetoxypalladation-isomerization to give a rr-allyl intermediate, which subsequently undergoes nucleophilic attack by acetate. This principle, i.e. rearrangement of a (allyl)palladium complex, has been applied in nonoxidative palladium-catalyzed reactions of 1,4-dienes by Larock and coworkers29. Akermark and coworkers have demonstrated the stereochemistry of this process by the transformation of 1,4-cyclohexadiene to the ( r-allyl)palladium complex 26 by treatment... [Pg.660]

For the synthesis of heterocycles, an efficient strategy has been introduced utilizing the dual transition metal sequences (Scheme 6).11,lla The key issue is the compatibility of the two catalyst systems. Jeong et al. studied the one-pot preparation of bicyclopentenone 35 from propargylsulfonamide 33 and allylic acetate.11 This transformation includes two reactions the first palladium-catalyzed allylation of 33 generates an enyne 34 and the following Pauson-Khand type reaction (PKR) of 34 yields a bicyclopentenone 35. The success of this transformation reflects the right combination of catalysts which are compatible with each other because the allylic amination can be facilitated by the electron-rich palladium(O) catalyst and the PKR needs a Lewis-acidic catalyst. Trost et al. reported the one-pot enantioselective... [Pg.699]

In 1997, Backvall and Jonasson published a procedure for the 1,2-oxidation of terminal allenes 7 [5]. In this case the reaction conditions were chosen so that the (vinyl)palladium complex equilibrates back to the allene complex. Using bromide instead of chloride as a nucleophile, the 2-bromo-jt-allyl complex 9 is the major intermediate present in the reaction mixture. A catalytic reaction was developed with the use of 5 mol% palladium acetate and p-benzoquinone (BQ) as terminal oxidant (Scheme 17.5). [Pg.976]

The first iridium catalysts for allylic substitution were published in 1997. Takeuchi showed that the combination of [fr(COD)Cl]2 and triphenylphosphite catalyzes the addition of malonate nucleophiles to the substituted terminus of t -allyliridium intermediates that are generated from allylic acetates. This selectivity for attack at the more substituted terminus gives rise to the branched allylic alkylation products (Fig. 4), rather than the linear products that had been formed by palladium-catalyzed allylic substitution reactions at that time [7]. The initial scope of iridium-catalyzed allylic substitution was also restricted to stabilized enolate nucleophiles, but it was quickly expanded to a wide range of other nucleophiles. [Pg.173]

Palladium-catalyzed allylation using nucleophiles with allylic halides, acetates, carbonates, etc. via intermediate allylpalladium complexes, and typically with overall retention of stereochemistry. [Pg.594]

Blechert reported a skillful method of cross-enyne metathesis. Solid-supported alkyne 139 is reacted with alkene in the presence of Ic to give 140. For cleavage of 1,3-diene from solid-supported product 140 having an allyl acetate moiety, palladium-catalyzed allylic substitution is used. Thus, 140 is treated with Pd(PPh3)4 in the presence of methyl malonate to afford three-component coupling product 141 in good yield ... [Pg.195]

Palladium-catalyzed, Allylic Amination. Allylic substitution of mono-saccharidic hex-2-enopyranoside 4-acetates with secondary amines in the presence of tetrakis (triphenylphosphine)palladium(O) liad led to a large variety of 4-aminated 2-enosides, with retention of configuration (56-58). The method was applied to the disaccaridic enoside 1 to give, with benzylmethylamine or dibenzylamine, the 4-amino sugar derivatives g in yields of 92 and 67% (46). Studies concerning hydrox-ylation of t)ie double bond and subsequent deprotection are incomplete. [Pg.39]

Allylic acetoxylation with palladium(II) salts is well known however, no selective and catalytic conditions have been described for the transformation of an unsubstituted olefin. In the present system use is made of the ability of palladium acetate to give allylic functionalization (most probably via a palladium-x-allyl complex) and to be easily regenerated by a co-oxidant (the combination of benzoquinone-manganese dioxide). In contrast... [Pg.184]

The iodo acetal could be easily obtained (as a mixture of E and Z isomers, 40/60), by a nickel catalyzed iodine-bromine exchange. This synthon reacted smoothly with the C15 tertiary allylic alcohol in the presence of a catalytic amount of palladium acetate and a stoechiometric amount of either a silver or a thallium salt. The C20 hydroxy-acetal was obtained in 38% yield, as a mixture of E and Z isomers (48/52). Finally retinal was obtained by treatment with dilute HBr in refluxing acetone, as a mixture of E and Z isomers (C(9)=C(io) and C(i3)=C(i4)), Fig. (32). [Pg.88]

The oxidation of ds-2-hexene (II) catalyzed by palladium acetate proceeds after an induction period of 2-4 hrs shown in Figure 4. Using 0.00163M palladium acetate total inhibition of reaction was observed with 1.08 X 10 5M quinol. 2,4,6-tri (tert-Butyl) phenol (5.60 X 10 5M) only showed the reaction without total inhibition. The formation of the allylic complex IVb proceeds in a similar way to the reaction of I, and it is the major species in the catalyst solutions. The formation of unsatu-... [Pg.66]


See other pages where Palladium acetate allylations is mentioned: [Pg.175]    [Pg.923]    [Pg.8]    [Pg.12]    [Pg.16]    [Pg.20]    [Pg.39]    [Pg.40]    [Pg.62]    [Pg.140]    [Pg.81]    [Pg.514]    [Pg.697]    [Pg.195]    [Pg.82]    [Pg.304]    [Pg.791]    [Pg.488]    [Pg.50]    [Pg.579]    [Pg.221]    [Pg.710]    [Pg.68]    [Pg.475]    [Pg.439]    [Pg.226]    [Pg.58]    [Pg.59]    [Pg.65]   


SEARCH



2- allyl acetate allylation

Acetal allylation

Acetals allylations

Alkenes allylic acetoxylations, palladium acetate

Alkenes allylic alcohols, palladium acetate

Allyl acetate

Allyl acetates palladium catalysis

Allyl acetates palladium-catalyzed

Allylic acetals

Allylic acetates

Allylic acetates acetate

Allyls palladium

Palladium acetate

Palladium acetate allylic oxidation

Palladium allylation

© 2024 chempedia.info