Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxide-reduction time

A relationship was also established between the oxide-reduction time and time of exposure, and the results for a mild steel and a lCu-3Ni weathering steel were similar to those obtained by mass loss. The authors give various expressions that relate oxide-reduction time (min) with corrosion rate (mm/y), and claim that a short exposure to a laboratory SO2 atmosphere followed by determining the E vs. time and oxide-reduction time provides a rapid method of evaluating weathering steels. [Pg.1031]

The iron carbide process is alow temperature, gas-based, fluidized-bed process. Sized iron oxide fines (0.1—1.0 mm) are preheated in cyclones or a rotary kiln to 500°C and reduced to iron carbide in a single-stage, fluidized-bed reactor system at about 590°C in a process gas consisting primarily of methane, hydrogen, and some carbon monoxide. Reduction time is up to 18 hours owing to the low reduction temperature and slow rate of carburization. The product has the consistency of sand, is very britde, and contains approximately 6% carbon, mostly in the form of Ee C. [Pg.431]

Metals are most active when they first deposit on the catalyst. With time, they lose their initial effectiveness through continuous oxidation-reduction cycles. On average, about one third of the nickel on the equilibrium catalyst will have the activity to promote dehydrogenation reactions. [Pg.64]

Oxidation-reduction potential Because of the interest in bacterial corrosion under anaerobic conditions, the oxidation-reduction situation in the soil was suggested as an indication of expected corrosion rates. The work of Starkey and Wight , McVey , and others led to the development and testing of the so-called redox probe. The probe with platinum electrodes and copper sulphate reference cells has been described as difficult to clean. Hence, results are difficult to reproduce. At the present time this procedure does not seem adapted to use in field tests. Of more importance is the fact that the data obtained by the redox method simply indicate anaerobic situations in the soil. Such data would be effective in predicting anaerobic corrosion by sulphate-reducing bacteria, but would fail to give any information regarding other types of corrosion. [Pg.387]

That work led to a routine 700 gram scale oxide reduction process that has been in use since that time. Recent development work at LANL has increased the batch size to one kilogram of oxide feed. It appears that the ultimate limitation on DOR batch size will be from criticality safety constraints. [Pg.379]

It is also often taken for granted that many of the Earth s subsystems are exposed to free oxygen (O2), leading to a range of one-way reactions of reduced materials (such as organic carbon or metal sulfides) to an oxidized form. As pointed out many times in earlier chapters, the oxidation-reduction status of the planet is the consequence of the dynamic interactions of biogeochemical cycles. As is the case with the acid-base balances, there is considerable sensitivity to perturbations of "redox" conditions, sometimes dramatically as in the case of bodies of water that suddenly become anaerobic because of eutrophication. Another extreme... [Pg.421]

The last two decades have seen a growing interest in the mechanism of inorganic reactions in solution. Nowhere is this activity more evident than in the topic covered by this review the oxidation-reduction processes of metal complexes. This subject has been reviewed a number of times previously, notably by Taube (1959), Halpern (1961), Sutin (1966), and Sykes (1967). Other articles and books concerned, wholly or partly, with the topic include those by Stranks, Fraser , Strehlow, Reynolds and Lumry , Basolo and Pearson, and Candlin et al ° Important recent articles on the theoretical aspects are those by Marcus and Ruff. Elementary accounts of redox reactions are included in the books by Edwards , Sykes and Benson . The object of the present review is to provide a more detailed survey of the experimental work than has hitherto been available. [Pg.153]

The reactions discussed above show that arsenic(fV) is of redox amphoteric character and a stronger reducing agent than arsenic(in), but at the same time it is a stronger oxidant than arsenic(V). Partners of the oxidation-reduction reactions of arsenic(fV) known so far can be seen in Table 13. It follows from the redox amphoteric character that the oxidation potentials of couples involving arsenic species are in the order... [Pg.552]

Thick sedimentary pile from middle Miocene to late Pliocene is exposed in the Oga Peninsula, northern Honshu, Japan (Fig. 1.153). Age of the sedimentary rocks has been determined by microfossil data. Thus, the sedimentary rocks in the Oga Peninsula where type localities of Miocene sedimentary rocks in northern Japan are well exposed have been studied to elucidate the paleoenvironmental change of the Japan Sea (Watanabe et al., 1994a,b). Kimura (1998) obtained geochemical features of these rocks (isotopic and chemical compositions) and found that regional tectonics (uplift of Himalayan and Tibetan region) affect paleo-oceanic environment (oxidation-reduction condition, biogenic productivity). However, in their studies, no detailed discussions on the causes for the intensity and periodicity of hydrothermal activity, and temporal relationship between hydrothermal activity, volcanism and tectonics in the Japan Sea area were discussed. They considered only the time range from ca. 14 Ma to ca. 5 Ma. [Pg.213]

It should be noted that in all cases the size (and hence cost) of end-of-pipe treatment has a direct relationship to both the volume of effluent to be treated and the concentration of pollutants contained in the discharge. For example, the size of most physicochemical reactors (balancing, neutralizing, flocculation, sedimentation, flotation, oxidation, reduction, etc.) is determined by hydraulic factors such as surface loading rate and retention time. [Pg.2]

The reduction of cyanocobalamin gives three possible oxidation states for the cobalt atom (Fig. 2). Electron spin resonance studies with Bi2-r reveals that this molecule is the only paramagnetic species giving a spectrum expected for a tetragonal low spin Co(II) complex. Controlled potential reduction of cyanocobalamin to Bi2-r proves that this reduction involves one electron, and further reduction of Bi2-r to B12-S requires a second single electron (16—19). At one time B12-S was considered to be a hydride of Co(III), but controlled potential coulometry experiments provided evidence against a stable hydride species (16). However, these experimental data do not exclude the possibility of a stable Co(III) hydride as the functional species in enzyme catalyzed oxidation reduction reactions. [Pg.53]

In every reaction in which the oxidation number of an element in one reactant (or more than one) goes up, an element in some reactant (or more than one) must go down in oxidation number. An increase in oxidation number is called an oxidation. A decrease in oxidation number is called a reduction. The term redox (the first letters of reduction and oxidation) is often used as a synonym for oxidation-reduction. The total change in oxidation number (change in each atom times number of atoms) must be the same in the oxidation as in the reduction, because the number of electrons transferred from one species must be the same as the number transferred to the other. The species that causes another to be reduced is called the reducing agent in the process, it is oxidized. The species that causes the oxidation is called the oxidizing agent in the process, it is reduced. [Pg.216]

Self-propagating reduction reactions Several oxide reduction solid-state reactions have been known for a long time. Starting materials are considered which react together highly exothermically. Once the reaction is initiated, enough heat is produced for very high temperature to be attained, and complete reaction occurs rapidly. The so-called thermite process corresponds to the reactions ... [Pg.572]

The proper location of data is also important in parameter-estimation situations. For the nitric oxide reduction reaction (K11), for example, the relative sizes of the three-dimensional confidence regions calculated after each observation are shown in Fig. 27. The size of the confidence region after 12 points taken according to a one factor at a time variation of hydrogen and nitric oxide partial pressures is seen to be equivalent the size of the region... [Pg.168]


See other pages where Oxide-reduction time is mentioned: [Pg.1030]    [Pg.1059]    [Pg.1030]    [Pg.1059]    [Pg.284]    [Pg.472]    [Pg.160]    [Pg.176]    [Pg.120]    [Pg.46]    [Pg.44]    [Pg.38]    [Pg.338]    [Pg.292]    [Pg.279]    [Pg.134]    [Pg.134]    [Pg.52]    [Pg.71]    [Pg.232]    [Pg.419]    [Pg.494]    [Pg.77]    [Pg.5]    [Pg.629]    [Pg.340]    [Pg.209]    [Pg.118]    [Pg.450]    [Pg.160]    [Pg.246]    [Pg.88]    [Pg.14]    [Pg.125]    [Pg.188]   
See also in sourсe #XX -- [ Pg.19 , Pg.56 ]

See also in sourсe #XX -- [ Pg.19 , Pg.56 ]




SEARCH



Time, oxidation

© 2024 chempedia.info