Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative stress reduction

Although it is widely accepted that ischaemia/ reperfusion-induced oxidant stress is associated with a reduction of Na/K ATPase activity, it is difficult to determine which features of this process are responsible for this effect. A classical approach to this type of problem has been to determine the effect of the application of selected metabolites or agents on the activity of the enzyme of interest, an approach that has been exploited for the sarcolemmal Na/K ATPase and glutathione (Haddock et al., 1990). The application of GSH (O.l-l.OmM) induces a concentration-dependent increase in the activity of a bovine isolated ventricular Na/K ATPase preparation (determined by the ouabain-sensitive hydrolysis of ATP to release inorganic phosphate). In the presence of 1 mM GSH there was a 38% stimulation of activity compared to untreated control... [Pg.64]

In a recent study, serum ascorbate concentrations were significantly reduced in a group of elderly diabetic patients (w = 40, mean age 69 years) in comparison with an age-matched group of non-diabetic controls ( = 22, mean age 71 years), and this reduction was more pronounced in those patients with microangiopathy (Sinclair et al., 1991). Diabetic patients were shown to have a high serum dehydroascorbate/ascorbate ratio indicative of increased oxidative stress. Ascorbate deficiency was partially corrected by vitamin C supplementation, 1 g daily by mouth, but the obvious disturbance in ascorbate metabolism in the diabetic patients was accentuated, since serum ascorbate concentrations fell (after the initial rise) despite continued vitamin C supplementation (Fig. 12.3). [Pg.186]

The importance of having adequate supplies of NADPH for the regeneration of these various enzymes cannot be over emphasized. In normal situations this cofactor can be adequately provided by the reductive pentose phosphate pathway. Monitoring the activity of the pentose phosphate pathway has been proposed as a unique way to study the metabolic response to oxidative stress, since the glutathione peroxidase activity is coupled via glutathione reductase to the enzyme glucose-6-phosphate dehydrogenase (Ben Yoseph et ah, 1994). [Pg.276]

III. Glutathione reductase (EC 1.6.4.2) It is a flavoprotein that catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG) to glutathione (GSH). This enzyme is essential for the GSH redox cycle which maintains adequate levels of reduced cellular GSH. A high GSH/GSSG ratio is essential for protection against oxidative stress. [Pg.141]

Hydroxy-10,12-octadecadienoic acid, which is formed by the reduction of 9-HPODE, was identified in the erythrocyte membrane phospholipid of diabetic patients [83]. It was suggested that this compound was formed as a result of glucose-induced oxidative stress in the reaction of hydroxyl radicals with linoleic acid. [Pg.782]

There is probably one more mechanism of MPO-mediated lipid peroxidation. Kettle and Candaeis [174] have studied the oxidation of tryptophan by neutrophil MPO. They suggested that tryptophan, which is present in plasma at the similar concentration as tyrosine and has a similar one-electron reduction potential, can contribute to oxidative stress at inflammation sites. It was proposed that the formed tryptophan free radicals may stimulate oxidative stress during inflammation. [Pg.798]

This mechanism is now considered to be of importance for the protection of LDL against oxidation stress, Chapter 25.) The antioxidant effect of ubiquinones on lipid peroxidation was first shown in 1980 [237]. In 1987 Solaini et al. [238] showed that the depletion of beef heart mitochondria from ubiquinone enhanced the iron adriamycin-initiated lipid peroxidation whereas the reincorporation of ubiquinone in mitochondria depressed lipid peroxidation. It was concluded that ubiquinone is able to protect mitochondria against the prooxidant effect of adriamycin. Inhibition of in vitro and in vivo liposomal, microsomal, and mitochondrial lipid peroxidation has also been shown in studies by Beyer [239] and Frei et al. [240]. Later on, it was suggested that ubihydroquinones inhibit lipid peroxidation only in cooperation with vitamin E [241]. However, simultaneous presence of ubihydroquinone and vitamin E apparently is not always necessary [242], although the synergistic interaction of these antioxidants may take place (see below). It has been shown that the enzymatic reduction of ubiquinones to ubihydroquinones is catalyzed by NADH-dependent plasma membrane reductase and NADPH-dependent cytosolic ubiquinone reductase [243,244]. [Pg.878]

Cystic fibrosis is the most common lethal autosomal-recessive disease, in which oxidative stress takes place at the airway surface [274]. This disease is characterized by chronic infection and inflammation. Enhanced free radical formation in cystic fibrosis has been shown as early as 1989 [275] and was confirmed in many following studies (see references in Ref. [274]). Contemporary studies also confirm the importance of oxidative stress in the development of cystic fibrosis. Ciabattoni et al. [276] demonstrated the enhanced in vivo lipid peroxidation and platelet activation in this disease. These authors found that urinary excretion of the products of nonenzymatic lipid peroxidation PGF2 and TXB2 was significantly higher in cystic fibrotic patients than in control subjects. It is of importance that vitamin E supplementation resulted in the reduction of the levels of these products of peroxidation. Exhaled ethane, a noninvasive marker of oxidative stress, has also been shown to increase in cystic fibrosis patients [277]. [Pg.934]

Baumer AT, Wassmann S, Ahlbory K, Strehlow K, Muller C, Sauer H, Bohm M, Nick-enig G (2001) Reduction of oxidative stress and AT 1 receptor expression by the selective oestrogen receptor modulator idoxifene. Br J Pharmacol 134 579-584... [Pg.238]


See other pages where Oxidative stress reduction is mentioned: [Pg.231]    [Pg.571]    [Pg.231]    [Pg.571]    [Pg.2751]    [Pg.282]    [Pg.94]    [Pg.94]    [Pg.178]    [Pg.227]    [Pg.865]    [Pg.360]    [Pg.365]    [Pg.56]    [Pg.57]    [Pg.57]    [Pg.59]    [Pg.63]    [Pg.63]    [Pg.79]    [Pg.101]    [Pg.116]    [Pg.186]    [Pg.218]    [Pg.220]    [Pg.225]    [Pg.240]    [Pg.367]    [Pg.288]    [Pg.33]    [Pg.323]    [Pg.21]    [Pg.921]    [Pg.944]    [Pg.668]    [Pg.541]    [Pg.569]    [Pg.222]    [Pg.227]    [Pg.196]    [Pg.247]    [Pg.433]    [Pg.114]    [Pg.148]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Oxidative stress

Oxidative stress oxidation

Oxidative/oxidant stress

Reductive stress

Stress reduction

© 2024 chempedia.info