Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative stereospecific oxidation

Electron-deficient alkenes add stereospecifically to 4-hydroxy-THISs with formation of endo-cycloadducts. Only with methylvinyl-ketone considerable amounts of the exo isomer are produced (Scheme 8) (16). The adducts (6) may extrude hydrogen sulfide on heating with methoxide producing 2-pyridones. The base is unnecessary with fumaronitrile adducts. The alternative elimination of isocyanate Or sulfur may be controlled using 7 as the dipolarenOphile. The cycloaddition produces two products, 8a (R = H, R = COOMe) and 8b (R = COOMe, R =H) (Scheme 9) (17). Pyrolysis of 8b leads to extrusion of furan and isocyanate to give a thiophene. The alternative S-elimi-nation can be effected by oxidation of the adduct and subsequent pyrolysis. [Pg.5]

Overall the stereospecificity of this method is the same as that observed m per oxy acid oxidation of alkenes Substituents that are cis to each other m the alkene remain CIS m the epoxide This is because formation of the bromohydrm involves anti addition and the ensuing intramolecular nucleophilic substitution reaction takes place with mver Sion of configuration at the carbon that bears the halide leaving group... [Pg.677]

Deamination, Transamination. Two kiads of deamination that have been observed are hydrolytic, eg, the conversion of L-tyrosiae to 4-hydroxyphenyUactic acid ia 90% yield (86), and oxidative (12,87,88), eg, isoguanine to xanthine and formycia A to formycia B. Transaminases have been developed as biocatalysts for the synthetic production of chiral amines and the resolution of racemic amines (89). The reaction possibiUties are illustrated for the stereospecific synthesis of (T)-a-phenylethylamine [98-84-0] (ee of 99%) (40) from (41) by an (5)-aminotransferase or by the resolution of the racemic amine (42) by an (R)-aminotransferase. [Pg.313]

In a first step, JS ocardia asteroides selectively oxidizes only (3)-pantolactone to ketopantolactone (19), whereas the (R)-pantolactone remains unaffected (47). The accumulated ketopantolactone is stereospecificaHy reduced to (R)-pantolactone in a second step with Candidaparapsilosis (product concentration 72 g/L, 90% molar yield and 100% ee) (48). Racemic pantolactone can also be converted to (R)-pantolactone by one single microbe, ie, Jiodococcus erythropolis by enantioselective oxidation to (3)-pantolactone and subsequent stereospecific reduction in 90% yield and 94% ee (product concentration 18 g/L) (40). [Pg.60]

Ring contraction of 2-thiocephems has also been examined as a route to penems. Desulfurization of (82, n = 0) using triphenylphosphine gave mixtures of 5(R)- and 5(5)-penems (121). The stereochemical problem was neatiy overcome by regioselective oxidation to the thiosulfonate (82, n = 2) which underwent stereospecific thermal extmsion of sulfur dioxide (122) to give the S(R)-penem (83). [Pg.13]

N- Aminoaziridines have been converted to alkenes by reaction with a variety of oxidizing agents (70JA1784). Usually, the deamination reaction is stereospecific. The oxidation of l-amino-2,3-diphenylaziridines with manganese dioxide, however, was not stereospecific. The trans compound gives entirely frans-stilbene, whereas the cfs-aziridine forms a mixture of 85% trans- and 15% c -aikene. cw-Stilbene is not isomerized to trans under the reaction conditions, and the results are explained in terms of an azamine intermediate which can isomerize through a tautomeric equilibrium. [Pg.74]

Alkylaziridines can be stereospecifically deaminated to alkenes by reaction with m-chioroperbenzoic acid (70AG(E)374). The reaction and work-up are carried out in the dark to avoid isomerization of the cw-alkene, and the mechanism is thought to involve an initial oxidation to an amine oxide followed by a concerted elimination. Aziridine oxides have been generated by treating aziridines with ozone at low temperatures (71JA4082). Two... [Pg.74]

Other non-oxidative procedures have also been used to deaminate aziridines. For example, aziridines react with carbenes to yield ylides which subsequently decompose to the alkene. Dichlorocarbene and ethoxycarbonylcarbene have served as the divalent carbon source. The former gives dichioroisocyanides, e.g. (281), as by-products (72TL3827) and the latter yields imines (72TL4659). This procedure has also been applied to aziridines unsubstituted on the nitrogen atom although the decomposition step, in this case, is not totally stereospecific (72TL3827). [Pg.75]

Electron deficient carbon-carbon double bonds are resistant to attack by the electrophilic reagents of Section 5.05.4.2.2(t), and are usually converted to oxiranes by nucleophilic oxidants. The most widely used of these is the hydroperoxide ion (Scheme 79). Since epoxidation by hydroperoxide ion proceeds through an intermediate ct-carbonyl anion, the reaction of acyclic alkenes is not necessarily stereospecific (Scheme 80) (unlike the case of epoxidation with electrophilic agents (Section 5.05.4.2.2(f)) the stereochemical aspects of this and other epoxidations are reviewed at length in (B-73MI50500)). [Pg.117]

Enby 6 is an example of a stereospecific elimination reaction of an alkyl halide in which the transition state requires die proton and bromide ion that are lost to be in an anti orientation with respect to each odier. The diastereomeric threo- and e/ytAra-l-bromo-1,2-diphenyl-propanes undergo )3-elimination to produce stereoisomeric products. Enby 7 is an example of a pyrolytic elimination requiring a syn orientation of die proton that is removed and the nitrogen atom of the amine oxide group. The elimination proceeds through a cyclic transition state in which the proton is transferred to die oxygen of die amine oxide group. [Pg.100]

A facile method for the stereospecific labeling of carbon atoms adjacent to an oxygenated position is the reductive opening of oxides. The stereospecificity of this reaction is due to virtually exclusive diaxial opening of steroidal oxides when treated with lithium aluminum hydride or deuteride. The resulting /ra/w-diaxial labeled alcohols are of high stereochemical and isotopic purity, with the latter property depending almost solely on the quality of the metal deuteride used. (For the preparation of m-labeled alcohols, see section V-D.)... [Pg.204]

Lithium aluminum deuteride reduction of the 2a,3a-oxide function has been carried out with a number of different 5a-steroids (227). ° The isotopic purity of the resulting 2 -d,-3a-ols (228) is usually 96-100%. By mild oxidation, under Jones conditions, these alcohols can be converted into stereospecifically labeled monodeuterio ketones (229) ° of high isotopic purity. (For an alternate preparation of certain a-monodeuterio ketones, see section VI-B.)... [Pg.204]

PerfluoroaUcenes are converted to vicinal diols when no fluonne atom is present at the double bond Configurational isomers of perfluoroalkenes [29] (equations 20 and 21) are oxidized stereospecifically Perfluorbicyclo[4 3 0]non-1(6) ene gives the corresponding 1,6 diol m a 24% yield upon oxidation with potassium permanganate at 18 °C for 1 h [29]... [Pg.328]

Hydroboration-oxidation (Sections 6.11-6.13) This two-step sequence achieves hydration of alkenes in a stereospecific syn manner, with a regiose-lectivity opposite to Markovnikov s rule. An organoborane is formed by electrophilic addition of diborane to an alkene. Oxidation of the organoborane intermediate with hydrogen peroxide completes the process. Rearrangements do not occur. [Pg.273]

Peroxy acid oxidation of alkenes (Sections 6.18 and 16.9) Peroxy acids transfer oxygen to alkenes to yield epoxides. Stereospecific syn addition is observed. [Pg.693]

The first objective was the conversion of L-tryptophan into a derivative that could be converted to pyrroloindoline 3, possessing a cis ring fusion and a syn relationship of the carboxyl and hydroxyl groups. This was achieved by the conversions shown in Scheme 1. A critical step was e. Of many variants tried, the use of the trityl group on the NH2 of tryptophan and the t-butyl group on the carboxyl resulted in stereospecific oxidative cyclization to afford 3 of the desired cis-syn stereochemistry in good yield. [Pg.5]

Optical resolution of the dithiirane 1-oxides 2 and 3 was accomplished by HPLC equipped with a chiral column (97T12203). Absolute configurations of 2a and 2b were determined by X-ray crystallography. Tire stereospecific isomerization (epimerrzation) of 2a to 3b and 2b to 3a was observed during the resolution study. [Pg.237]

The ynaminoketone vinylogs react with 1,3-dipoles (C,N-disubstituted nitii-limines, benzonitrile A-oxide) in a regio- and stereospecific fashion at the triple... [Pg.246]

For the construction of oxygen-functionalized Diels-Alder products, Narasaka and coworkers employed the 3-borylpropenoic acid derivative in place of 3-(3-acet-oxypropenoyl)oxazolidinone, which is a poor dienophile in the chiral titanium-catalyzed reaction (Scheme 1.55, Table 1.24). 3-(3-Borylpropenoyl)oxazolidinones react smoothly with acyclic dienes to give the cycloadducts in high optical purity [43]. The boryl group was converted to an hydroxyl group stereospecifically by oxidation, and the alcohol obtained was used as the key intermediate in a total synthesis of (-i-)-paniculide A [44] (Scheme 1.56). [Pg.36]

A mixture of cis- and /ra 5-l, 4-cycIohexanediols obtained from the hydrogenation of hydroquinone can be converted into the bridged 1,4-oxide by dehydration over alumina. The oxide, which is required to have a cis geometry, can then be cleaved by hydrohalic acids to give stereospecifically the trans disubstituted products. [Pg.51]


See other pages where Oxidative stereospecific oxidation is mentioned: [Pg.210]    [Pg.278]    [Pg.42]    [Pg.277]    [Pg.309]    [Pg.183]    [Pg.157]    [Pg.51]    [Pg.423]    [Pg.15]    [Pg.283]    [Pg.67]    [Pg.36]    [Pg.86]    [Pg.141]    [Pg.155]    [Pg.156]    [Pg.189]    [Pg.319]    [Pg.329]    [Pg.334]    [Pg.196]    [Pg.787]    [Pg.287]    [Pg.92]    [Pg.93]    [Pg.28]    [Pg.316]   
See also in sourсe #XX -- [ Pg.380 ]




SEARCH



Hydroboration-Oxidation A Stereospecific Anti-Markovnikov Hydration

Oxidation stereospecific synthesis

Oxidation-reduction reactions stereospecificity

Oxidations, stereospecific

Oxidative stereospecific amination

Stereospecific oxidation/reduction

Stereospecific reactions Baeyer Villiger oxidation

Steroids, stereospecific oxidation

© 2024 chempedia.info