Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative hydrodesulfurization

Molybdenum oxide - alumina systems have been studied in detail (4-8). Several authors have pointed out that a molybdate surface layer is formed, due to an interaction between molybdenum oxide and the alumina support (9-11). Richardson (12) studied the structural form of cobalt in several oxidic cobalt-molybdenum-alumina catalysts. The presence of an active cobalt-molybdate complex was concluded from magnetic susceptibility measurements. Moreover cobalt aluminate and cobalt oxide were found. Only the active cobalt molybdate complex would contribute to the activity and be characterized by octahedrally coordinated cobalt. Lipsch and Schuit (10) studied a commercial oxidic hydrodesulfurization catalyst, containing 12 wt% M0O3 and 4 wt% CoO. They concluded that a cobalt aluminate phase was present and could not find indications for an active cobalt molybdate complex. Recent magnetic susceptibility studies of the same type of catalyst (13) confirmed the conclusion of Lipsch and Schuit. [Pg.155]

Moser, W. R., Rare Earth Metal Oxide Hydrodesulfurization Catalysts, U.S. Patent 4,108,589, Assigned to Exxon (August 8,1978c). [Pg.45]

Molybdenum oxide catalysts are widely employed in oxidation, hydrodesulfur-izahon and hydrodenitrogenation reachons. The achve phase is most commonly supported on alumina, although mixed-metal oxides are also used. As for supported vanadium catalysts, both stahc and MAS NMR techniques were widely employed in early studies of such systems [125-129]. Like and Al, Mo is a... [Pg.218]

Large-pore" materials are becoming important in some industrial applications catalytic processes for selective oxidation, hydrodesulfurization, steam reforming inorganic ceramic membrane reactors supports for high performance liquid chromatography, etc. [Pg.380]

In fine-chemicals production three-phase reaction systems are common for the hydrogenation and hydrogenolysis of different organic functional groups. Other reactions, such as heterogeneously catalyzed catalytic oxidations, hydrodesulfurizations, and reductive aminations are encountered less frequently. [Pg.46]

Natural gas contains both organic and inorganic sulfur compounds that must be removed to protect both the reforming and downstream methanol synthesis catalysts. Hydrodesulfurization across a cobalt or nickel molybdenum—zinc oxide fixed-bed sequence is the basis for an effective purification system. For high levels of sulfur, bulk removal in a Hquid absorption—stripping system followed by fixed-bed residual clean-up is more practical (see Sulfur REMOVAL AND RECOVERY). Chlorides and mercury may also be found in natural gas, particularly from offshore reservoirs. These poisons can be removed by activated alumina or carbon beds. [Pg.276]

Sulfur, another inorganic petrochemical, is obtained by the oxidation of hydrogen sulfide 2H2S + O2 — 2H2 0 + 2S. Hydrogen sulfide is a constituent of natural gas and also of the majority of refinery gas streams, especially those off-gases from hydrodesulfurization processes. A majority of the sulfur is converted to sulfuric acid for the manufacture of fertilizers and other chemicals. Other uses for sulfur include the production of carbon disulfide, refined sulfur, and pulp and paper industry chemicals. [Pg.216]

The primary determinant of catalyst surface area is the support surface area, except in the case of certain catalysts where extremely fine dispersions of active material are obtained. As a rule, catalysts intended for catalytic conversions utilizing hydrogen, eg, hydrogenation, hydrodesulfurization, and hydrodenitrogenation, can utilize high surface area supports, whereas those intended for selective oxidation, eg, olefin epoxidation, require low surface area supports to avoid troublesome side reactions. [Pg.194]

The breadth of reactions catalyzed by cobalt compounds is large. Some types of reactions are hydrotreating petroleum (qv), hydrogenation, dehydrogenation, hydrodenitrification, hydrodesulfurization, selective oxidations, ammonoxidations, complete oxidations, hydroformylations, polymerizations, selective decompositions, ammonia (qv) synthesis, and fluorocarbon synthesis (see Fluorine compounds, organic). [Pg.380]

Metal oxides, sulfides, and hydrides form a transition between acid/base and metal catalysts. They catalyze hydrogenation/dehydro-genation as well as many of the reactions catalyzed by acids, such as cracking and isomerization. Their oxidation activity is related to the possibility of two valence states which allow oxygen to be released and reabsorbed alternately. Common examples are oxides of cobalt, iron, zinc, and chromium and hydrides of precious metals that can release hydrogen readily. Sulfide catalysts are more resistant than metals to the formation of coke deposits and to poisoning by sulfur compounds their main application is in hydrodesulfurization. [Pg.2094]

A hst of 74 GLS reacdions with hterature references has been compiled by Shah Gas-Liquid-Solid Reactions, McGraw-HiU, 1979), classified into groups where the solid is a reactant, or a catalyst, or inert. A hst of 75 reactions made by Ramachandran and Chaudhari (Three-Phase Chemical Reactors, Gordon and Breach, 1983) identifies reactor types, catalysts, temperature, and pressure. They classify the processes according to hydrogenation of fatty oils, hydrodesulfurization, Fischer-Tropsch reactions, and miscellaneous hydrogenations and oxidations. [Pg.2118]

Step 1 represents adsorption of ammonia and step 2 its activation. The irreversible step 3 is obviously not elementary in nature, but unfortunately much information on the level of elementary steps is not available. Step 4 describes water formation and step 5 is the reoxidation of the site. Step 6 describes the blocking of sites by adsorption of water. The model thus relies on partially oxidized sites and vacancies on an oxide, similarly to the hydrodesulfurization reaction described in Chapter 9. The reactions are summarized in the cyclic scheme of Fig. 10.15. [Pg.398]

Flow diagram of the process for hydrogen and distillate fuel production from residual oil using iron oxides and steam. 1 = Cracking reactor, 2 = distillation column, 3 = hydrogen generator, and 4 = hydrodesulfurization reactor. [Pg.64]

These metals form chalcogenolate complexes in several oxidation states, and from the application-oriented point of view manganese compounds have been synthesized as models for hydrodesulfurization processes and rhenium and technetium derivatives as models for radiopharmaceuticals. [Pg.46]


See other pages where Oxidative hydrodesulfurization is mentioned: [Pg.563]    [Pg.156]    [Pg.563]    [Pg.595]    [Pg.563]    [Pg.563]    [Pg.241]    [Pg.489]    [Pg.28]    [Pg.563]    [Pg.156]    [Pg.563]    [Pg.595]    [Pg.563]    [Pg.563]    [Pg.241]    [Pg.489]    [Pg.28]    [Pg.469]    [Pg.477]    [Pg.57]    [Pg.525]    [Pg.526]    [Pg.526]    [Pg.135]    [Pg.394]    [Pg.380]    [Pg.1005]    [Pg.115]    [Pg.195]    [Pg.155]    [Pg.38]    [Pg.75]    [Pg.282]    [Pg.86]    [Pg.263]    [Pg.65]    [Pg.255]    [Pg.137]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Hydrodesulfuration

Hydrodesulfurization

Hydrodesulfurizer

© 2024 chempedia.info