Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative addition synthesis

A interesting and useful reaetion is the intramolecular polycyclization reaction of polyalkenes by tandem or domino insertions of alkenes to give polycyclic compounds[l 38]. In the tandem cyclization. an intermediate in many cases is a neopentylpalladium formed by the insertion of 1,1-disubstituted alkenes, which has no possibility of /3-elimination. The key step in the total synthesis of scopadulcic acid is the Pd-catalyzed construction of the tricyclic system 202 containing the bicyclo[3.2. Ijoctane substructure. The single tricyclic product 202 was obtained in 82% yield from 201 [20,164). The benzyl chloride 203 undergoes oxidative addition and alkene insertion. Formation of the spiro compound 204 by the intramolecular double insertion of alkenes is an exam-ple[165]. [Pg.158]

The Stille coupling of an aryl triflate normally calls for the addition of at least one equivalent of LiCl. Presumably, the transmetallation is facilitated by replacing triflate with CP at the palladium intermediate generated from oxidative addition. As Stille demonstrated in 1988, 4-quinolinyl triflate 100 was coupled with phenylstannane 101 in the presence of Pd(Ph3P)4 and LiCl in refluxing 1,4-dioxane to furnish biaryl 102, which was used as an intermediate for the first total synthesis of antibiotic amphimedine (88JA4051). [Pg.17]

The intramolecular Heck reaction presented in Scheme 8 is also interesting and worthy of comment. Rawal s potentially general strategy for the stereocontrolled synthesis of the Strychnos alkaloids is predicated on the palladium-mediated intramolecular Heck reaction. In a concise synthesis of ( )-dehydrotubifoline [( )-40],22 Rawal et al. accomplished the conversion of compound 36 to the natural product under the conditions of Jeffery.23 In this ring-forming reaction, the a-alkenylpalladium(n) complex formed in the initial oxidative addition step engages the proximate cyclohexene double bond in a Heck cyclization, affording enamine 39 after syn /2-hydride elimination. The latter substance is a participant in a tautomeric equilibrium with imine ( )-40, which happens to be shifted substantially in favor of ( )-40. [Pg.574]

In an extension of this work, the Shibasaki group developed the novel transformation 48—>51 shown in Scheme 10.25c To rationalize this interesting structural change, it was proposed that oxidative addition of the vinyl triflate moiety in 48 to an asymmetric palladium ) catalyst generated under the indicated conditions affords the 16-electron Pd+ complex 49. Since the weakly bound triflate ligand can easily dissociate from the metal center, a silver salt is not needed. Insertion of the coordinated alkene into the vinyl C-Pd bond then affords a transitory 7t-allylpalladium complex 50 which is captured in a regio- and stereocontrolled fashion by acetate ion to give the optically active bicyclic diene 51 in 80% ee (89% yield). This catalytic asymmetric synthesis by a Heck cyclization/ anion capture process is the first of its kind. [Pg.576]

Their synthesis uses H202 to carry out oxidative addition to platinum(II) ammines... [Pg.252]

Figure 3.106 Synthesis of a platinum(IV) complex by frans-oxidative addition of a platinum(II)... Figure 3.106 Synthesis of a platinum(IV) complex by frans-oxidative addition of a platinum(II)...
Figure 4.25 Synthesis of an organogold(III) compound by an unusual oxidative addition... Figure 4.25 Synthesis of an organogold(III) compound by an unusual oxidative addition...
This synthetic approach is known from the synthesis of L M(alkene)H compounds from LnM(CO)alkane precursors and can easily be applied to the analogous silyl complexes. The Si—H bond even shows an increased activity for oxidative addition reactions [42, 43]. [Pg.38]

This index contains over 25 000 entries to the 6562 text pages of Volumes 1-6. The index covers general types of coordination complex, specific coordination complexes, general and specific organic compounds where their synthesis or use involves coordination complexes, types of reaction (insertion, oxidative addition, etc.), spectroscopic techniques (NMR, IR, etc.), and other topics involving coordination complexes, such as medicinal and industrial applications. [Pg.73]

For trisubstituted olefins, the nucleophile attacks predominantly at the less substituted end of the allyl moiety, e.g. to afford a 78 22 mixture of 13 and 14 (equation 7). Both the oxidative addition of palladium(O) and the subsequent nucleophilic attack occur with inversion of configuration to give the product of net retention7. The synthesis of the sex pheromone 15 of the Monarch butterfly has been accomplished by using bis[bis(l,2-diphenylphosphinoethane)]palladium as a catalyst as outlined in equation 87. A substitution of an allyl sulfone 16 by a stabilized carbon nucleophile, such as an alkynyl or vinyl system, proceeds regioselectively in the presence of a Lewis acid (equation 9)8. The... [Pg.763]

Other sources of Ru(0) can also be used for this synthesis. For example, it was recently demonstrated that [Ru(arene)(diene)] complexes such as 39 undergo double oxidative addition of heterosubstituted dihalo compounds 40 in the presence of phosphine ligands (Eq. 5) [21]. [Pg.233]

The use of well-defined complexes has been widespread in this reaction, despite intriguing studies by Beller and others that have shown that in situ catalytic systems often give better yields in comparison to isolated carbene-Pd(O) complexes [147-149]. Since the mechanism consists of an oxidative addition on a Pd(0)-monocarbene species, efforts in catalyst synthesis have been directed towards Pd(ll)-monocarbene complexes with other labile groups that can be easily released leading to the formation of Pd(0). This is the case for dimers of the type [Pd( j,-C1)C1(NHC)]2, a family of pre-catalysts effective under aerobic conditions [150], the [Pd(acac)Cl(NHC)] complexes [151] and related palladacycles [152-154],... [Pg.182]

Figure 1.13 Synthesis of gold(ll) amidinate complexes by oxidative-addition to the dinuclear gold(l) amidinate. Figure 1.13 Synthesis of gold(ll) amidinate complexes by oxidative-addition to the dinuclear gold(l) amidinate.
Abdou, H. (2006) PhD. Thesis New Chemistry with Gold-Nitrogen Complexes Synthesis and Characterization of Tetra-, Tri-, and Dinuclear Gold(I) Amidinate Complexes. Oxidative-Addition to the Dinuclear Gold (I) Amidinate, A M University, Texas. [Pg.40]

FIGURE 6.33 Synthesis of 5a-bromo-a-tocopherol (46) from a-tocopherol (1) according to an oxidation-addition mechanism involving the o-QM intermediate 3. [Pg.196]


See other pages where Oxidative addition synthesis is mentioned: [Pg.127]    [Pg.209]    [Pg.251]    [Pg.483]    [Pg.36]    [Pg.182]    [Pg.2]    [Pg.569]    [Pg.576]    [Pg.299]    [Pg.116]    [Pg.167]    [Pg.173]    [Pg.188]    [Pg.2]    [Pg.109]    [Pg.261]    [Pg.7]    [Pg.233]    [Pg.6]    [Pg.171]    [Pg.174]    [Pg.40]    [Pg.24]    [Pg.34]    [Pg.38]    [Pg.100]    [Pg.684]    [Pg.1519]    [Pg.159]    [Pg.173]   
See also in sourсe #XX -- [ Pg.355 ]




SEARCH



Addition synthesis

Additive synthesis

Lactam synthesis oxidative addition

Lactone synthesis oxidative addition

Lactone synthesis oxidative addition processes

Oxidative addition organic synthesis

Oxidative addition reactions synthesis

Oxidative addition total synthesis

© 2024 chempedia.info