Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative addition intramolecular cyclization

S-Allyloxy tellurides also underwent similar radical 5-exo cyclizations catalyzed by 7 mol% of Ni(acac)2 and 2 equiv. of Et2Zn [113]. The reaction proceeded with high r/.v-selectivity in 56% yield. In contrast to the reactions of 5-hexenyl iodides shown above, 5-exo cyclization reactions of 5-hexynyl iodides were proposed to proceed by a two-electron pathway consisting of alkyne coordination/oxidative addition/intramolecular carbonickelation and reductive elimination, resulting in alkylidenecyclopentanes [114]. [Pg.349]

A interesting and useful reaetion is the intramolecular polycyclization reaction of polyalkenes by tandem or domino insertions of alkenes to give polycyclic compounds[l 38]. In the tandem cyclization. an intermediate in many cases is a neopentylpalladium formed by the insertion of 1,1-disubstituted alkenes, which has no possibility of /3-elimination. The key step in the total synthesis of scopadulcic acid is the Pd-catalyzed construction of the tricyclic system 202 containing the bicyclo[3.2. Ijoctane substructure. The single tricyclic product 202 was obtained in 82% yield from 201 [20,164). The benzyl chloride 203 undergoes oxidative addition and alkene insertion. Formation of the spiro compound 204 by the intramolecular double insertion of alkenes is an exam-ple[165]. [Pg.158]

The intramolecular Heck reaction presented in Scheme 8 is also interesting and worthy of comment. Rawal s potentially general strategy for the stereocontrolled synthesis of the Strychnos alkaloids is predicated on the palladium-mediated intramolecular Heck reaction. In a concise synthesis of ( )-dehydrotubifoline [( )-40],22 Rawal et al. accomplished the conversion of compound 36 to the natural product under the conditions of Jeffery.23 In this ring-forming reaction, the a-alkenylpalladium(n) complex formed in the initial oxidative addition step engages the proximate cyclohexene double bond in a Heck cyclization, affording enamine 39 after syn /2-hydride elimination. The latter substance is a participant in a tautomeric equilibrium with imine ( )-40, which happens to be shifted substantially in favor of ( )-40. [Pg.574]

A rationale for the cz s-selective cyclization for the intramolecular homoal-lylation of oo-dienyl aldehyde 64 is illustrated in Scheme 16. The scenario is essentially the same as the one proposed for the intermolecular reaction, and a Ni(0) species undergoes oxidative addition upon the diene and the aldehyde moieties through a conformation placing the aldehyde substituent and the diene anti to each other. An intermediate 66 undergoes (>-II elimination and czs-reductive elimination of the thus-formed Ni - H complex to produce 65. [Pg.208]

Other degradation products of the cytosine moiety were isolated and characterized. These include 5-hydroxy-2 -deoxycytidine (5-OHdCyd) (22) and 5-hydroxy-2 -deoxyuridine (5-OHdUrd) (23) that are produced from dehydration reactions of 5,6-dihydroxy-5,6-dihydro-2 -deoxycytidine (20) and 5,6-dihydroxy-5,6-dihydro-2 -deoxyuridine (21), respectively. MQ-photosen-sitized oxidation of dCyd also results in the formation of six minor nucleoside photoproducts, which include the two trans diastereomers of AT-(2-de-oxy-/j-D-eryf/iro-pentofuranosyl)-l-carbamoyl-4 5-dihydroxy-imidazolidin-2-one, h/1-(2-deoxy-J8-D-crythro-pentofuranosyl)-N4-ureidocarboxylic acid and the a and [5 anomers of N-(2-deoxy-D-eryfhro-pentosyl)-biuret [32, 53]. In contrast, formation of the latter compounds predominates in OH radical-mediated oxidation of the pyrimidine ring of dCyd, which involves preferential addition of OH radicals at C-5 followed by intramolecular cyclization of 6-hydroperoxy-5-hydroxy-5,6-dihydro-2 -deoxycytidine and subsequent generation of the 4,6-endoperoxides [53]. [Pg.18]

Interestingly, the nucleophilic addition of water in the sequence of events giving rise to 41 represents a relevant model system for investigating the mechanism of the generation of DNA-protein cross-links under radical-mediated oxidative conditions [80, 81]. Thus, it was shown that lysine tethered to dGuo via the 5 -hydroxyl group is able to participate in an intramolecular cyclization reaction with the purine base at C-8, subsequent to one electron oxidation [81]. [Pg.22]

Interesting intramolecular cyclization of 1-nitroalkyl radicals generated by one-electron oxidation of aci-nitro anions with CAN is reported. As shown in Eq. 5.44, stereoselective formation of 3,4-functionalized tetrahydrofurans is observed.62 l-Nitro-6-heptenyl radicals generated by one electron oxidation of aci-nitroanions with CAN afford 2,3,4-trisubstituted tetrahydropyrans.63 The requisite nitro compounds are prepared by the Michael addition of 3-buten-l-al to nitroalkenes. [Pg.137]

Intramolecular cyclizations could also be achieved by oxidation of 57 with PCC to 65 regioselective addition of an organometallic onto the 7(2)-carbonyl carbon of 65 was followed by treatment with acid to generate the iminium cation, and intramolecular trapping of the cation by an appropriate N-2 substituent (e.g., phenylethyl substituent) <2001TA2883> or C-4 substituent (e.g., benzyl group) <2002T6163>. [Pg.270]

The formation of derivatives of 2,3,6,8-tetraazabicyclo-[3.2.1]3-octene (425) arises from an intramolecular nucleophilic addition to the nitrone group of hydra-zone (424). Compound (424) was prepared by reaction of 2-acyl-3-imidazoline-3-oxides (423) with hydrazine. From the cis- and frans-derivatives (424), exo- and enr/o-isomers (425) were obtained (Scheme 2.197). The reaction of intramolecular cyclization does not occur in cases with monosubstituted hydrazones (316). [Pg.290]

Hartwig has reported an intramolecular/intermolecular process affording the 3-aryloxindoles 105 (Scheme 32).115 The intermolecular arylation of acetanilide derivative 104 is slower than the intramolecular arylation to form the oxindole. Thus, the overall transformation starts with cyclization followed by intermolecular arylation of indole. In order to slow down the intermolecular process and speed up the intramolecular reaction, chloroarene and bromine-substituted acetanilide precursors are used according to their respective reactivity with palladium(O) in the oxidative addition process. [Pg.314]

Presumably, the oxidative cyclization of 3 commences with direct palladation at the a position, forming o-arylpalladium(II) complex 5 in a fashion analogous to a typical electrophilic aromatic substitution (this statement will be useful in predicting the regiochemistry of oxidative additions). Subsequently, in a manner akin to an intramolecular Heck reaction, intermediate 5 undergoes an intramolecular insertion onto the other benzene ring, furnishing 6. (i-Hydride elimination of 6 then results in carbazole 4. [Pg.3]

Rawal s group developed an intramolecular aryl Heck cyclization method to synthesize benzofurans, indoles, and benzopyrans [83], The rate of cyclization was significantly accelerated in the presence of bases, presumably because the phenolate anion formed under the reaction conditions was much more reactive as a soft nucleophile than phenol. In the presence of a catalytic amount of Herrmann s dimeric palladacyclic catalyst (101) [84], and 3 equivalents of CS2CO3 in DMA, vinyl iodide 100 was transformed into ortho and para benzofuran 102 and 103. In the mechanism proposed by Rawal, oxidative addition of phenolate 104 to Pd(0) is followed by nucleophilic attack of the ambident phenolate anion on o-palladium intermediate 105 to afford aryl-vinyl palladium species 106 after rearomatization of the presumed cyclohexadienone intermediate. Reductive elimination of palladium followed by isomerization of the exocyclic double bond furnishes 102. [Pg.285]

The present volume contains 13 chapters written by experts from 11 countries, and treats topics that were not covered, or that are complementary to topics covered in Volume 1. They include chapters on mass spectra and NMR, two chapters on photochemistry complementing an earlier chapter on synthetic application of the photochemistry of dienes and polyenes. Two chapters deal with intermolecular cyclization and with cycloadditions, and complement a chapter in Volume 1 on intramolecular cyclization, while the chapter on reactions of dienes in water and hydrogen-bonding environments deals partially with cycloaddition in unusual media and complements the earlier chapter on reactions under pressure. The chapters on nucleophiliic and electrophilic additions complements the earlier chapter on radical addition. The chapter on reduction complements the earlier ones on oxidation. Chapters on organometallic complexes, synthetic applications and rearrangement of dienes and polyenes are additional topics discussed. [Pg.1198]

Oxidation of enaminone 1 is initiated by electron loss from the dimethylamino moiety leading to radical cation, RH". The following chemical reaction would be an intramolecular cyclization through addition of a hydroxy group on the radical cation site yielding a cyclic radical cation, cRH ". This step is most likely the rate-determining step. The cyclic radical cation then dimerizes... [Pg.94]

Preferential reduction of a nitro group in the presence of a carbonyl group in 4-nitroacetophenone ISD, intramolecular rearrangements of o-nitro-benzanilides 32) intramolecular cyclizations of o-nitro-ferf-anilines to benzimidazol-1-oxides 153,154) cyclizations of acylated 2-nitrodiphenylamines to phenazine-l-oxides i ), intramolecular additions of nitro groups to double bonds 156) remarkably ef-... [Pg.81]

Sames et al. have reported the intramolecular cyclization of alkene-amide substrates catalyzed by [Ir(COE)2Cl]2 and the A-heterocyclic carbene ligand, N, A -bis-(2,6-diisopropylphenyl)-imidazolyl, via olefin insertion following oxidative addition of an sp C-H bond (Scheme 11) [117]. [Pg.159]

A previous review has highlighted the following methods of ring synthesis intramolecular cyclization of oximes, nitro alkenes, and nitrones, and [4+2] cycloaddition reactions <1996CHEC-II(6)279>. In addition to that, this review includes the intramolecular cyclization of hydroxylamines, hydroxamates, hetero-Diels-Alder [4+2], 1,3-dipolar cycloaddition of nitrile oxides to alkenes, and [3+3] cycloaddition reactions. This review does not cover cycloaddition reactions of the [4+2] [3+2] and [4+2] [3+2] [3+2] types which primarily led to heterocycle-fused oxazine ring systems. [Pg.353]

Tamao and Ito proposed a mechanism for the nickel-catalyzed cyclization/hydrosilylation of 1,7-diynes initiated by oxidative addition of the silane to an Ni(0) species to form an Ni(ii) silyl hydride complex. Gomplexation of the diyne could then form the nickel(ii) diyne complex la (Scheme 1). Silylmetallation of the less-substituted G=C bond of la, followed by intramolecular / -migratory insertion of the coordinated G=G bond into the Ni-G bond of alkenyl alkyne intermediate Ila, could form dienylnickel hydride intermediate Ilia. Sequential G-H reductive elimination and Si-H oxidative addition would release the silylated dialkylidene cyclohexane and regenerate the silylnickel hydride catalyst (Scheme 1). [Pg.369]

Diyne cyclization/hydrosilylation catalyzed by 4 was proposed to occur via a mechanism analogous to that proposed for nickel-catalyzed diyne cyclization/hydrosilylation (Scheme 4). It was worth noting that experimental evidence pointed to a silane-promoted reductive elimination pathway. In particular, reaction of dimethyl dipropargylmalonate with HSiMc2Et (3 equiv.) catalyzed by 4 led to predominant formation of the disilylated uncyclized compound 5 in 51% yield, whereas slow addition of HSiMe2Et to a mixture of the diyne and 4 led to predominant formation of silylated 1,2-dialkylidene cyclopentane 6 (Scheme 5). This and related observations were consistent with a mechanism involving silane-promoted G-H reductive elimination from alkenylrhodium hydride species Id to form silylated uncyclized products in competition with intramolecular carbometallation of Id to form cyclization/hydrosilylation products (Scheme 4). Silane-promoted reductive elimination could occur either via an oxidative addition/reductive elimination sequence involving an Rh(v) intermediate, or via a cr-bond metathesis pathway. [Pg.372]

Mori has reported the nickel-catalyzed cyclization/hydrosilylation of dienals to form protected alkenylcycloalk-anols." For example, reaction of 4-benzyloxymethyl-5,7-octadienal 48a and triethylsilane catalyzed by a 1 2 mixture of Ni(GOD)2 and PPhs in toluene at room temperature gave the silyloxycyclopentane 49a in 70% yield with exclusive formation of the m,//7 //i -diastereomer (Scheme 14). In a similar manner, the 6,8-nonadienal 48b underwent nickel-catalyzed reaction to form silyloxycyclohexane 49b in 71% yield with exclusive formation of the // /i ,// /i -diastereomer, and the 7,9-decadienal 48c underwent reaction to form silyloxycycloheptane 49c in 66% yield with undetermined stereochemistry (Scheme 14). On the basis of related stoichiometric experiments, Mori proposed a mechanism for the nickel-catalyzed cyclization/hydrosilylation of dienals involving initial insertion of the diene moiety into the Ni-H bond of a silylnickel hydride complex to form the (7r-allyl)nickel silyl complex li (Scheme 15). Intramolecular carbometallation followed by O-Si reductive elimination and H-Si oxidative addition would release the silyloxycycloalkane with regeneration of the active silylnickel hydride catalyst. [Pg.388]

Acylpalladium intermediates can be involved in intramolecular processes leading to the formation of carbo- or heterocycles. In this chapter we discuss the cyclizations via the attack of acylpalladium intemediates at carbon centers and formation of new G-G bonds. The basic scheme (Scheme 7) of such processes includes the oxidative addition of Pd(0) to G(j )-X bonds (X = halogen or triflate), migratory insertion of GO, and subsequent intramolecular addition of acylpalladium intermediate to double or triple bonds to yield cyclic ketones. [Pg.419]


See other pages where Oxidative addition intramolecular cyclization is mentioned: [Pg.60]    [Pg.255]    [Pg.144]    [Pg.239]    [Pg.442]    [Pg.569]    [Pg.84]    [Pg.795]    [Pg.450]    [Pg.514]    [Pg.107]    [Pg.118]    [Pg.199]    [Pg.214]    [Pg.938]    [Pg.354]    [Pg.52]    [Pg.318]    [Pg.523]    [Pg.875]    [Pg.214]    [Pg.938]    [Pg.256]    [Pg.612]    [Pg.210]    [Pg.239]    [Pg.107]   


SEARCH



Addition, intramolecular cyclization

Cyclization oxidative

Cyclizations intramolecular

Cyclizations intramolecular addition

Intramolecular addition

Intramolecular cyclization

Intramolecular oxidative cyclization

Oxidation intramolecular

Oxidative addition Intramolecular

Oxidative addition cyclization

Oxidative cyclizations

Oxidative intramolecular

© 2024 chempedia.info