Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation-reduction hydroxyls

Chemical Properties. Lignin is subject to oxidation, reduction, discoloration, hydrolysis, and other chemical and enzymatic reactions. Many ate briefly described elsewhere (51). Key to these reactions is the ability of the phenolic hydroxyl groups of lignin to participate in the formation of reactive intermediates, eg, phenoxy radical (4), quinonemethide (5), and phenoxy anion (6) ... [Pg.142]

The primary side reaction at the anode is the oxidation of hydroxyl ion to oxygen. In an undivided ceU, a side reaction takes place also at the cathode, ie, the unwanted reduction of MnO and MnO to lower valent manganese species. [Pg.520]

Identification, isolation, and removal of (polyhydroxy)benzenes from the environment have received increased attention throughout the 1980s and 1990s. The biochemical activity of the benzenepolyols is at least in part based on thek oxidation—reduction potential. Many biochemical studies of these compounds have been made, eg, of enzymic glycoside formation, enzymic hydroxylation and oxidation, biological interactions with biochemically important compounds such as the catecholamines, and humic acid formation. The range of biochemical function of these compounds and thek derivatives is not yet fully understood. [Pg.375]

As it was shown in73, 74), methods that can be used to synthesize these copolymers of PAN are those of radical AN block copolymerization in the presence of an oxidation-reduction system in which the hydroxyl end groups of polyethylene oxide) (PEO)73) and polypropylene oxide) (PPO)74- oligomers serve as the reducing agents and tetravalent cerium salts as the oxidizing agents. [Pg.130]

In broad terms, the following types of reactions are mediated by the homolytic fission products of water (formally, hydrogen, and hydroxyl radicals), and by molecular oxygen including its excited states—hydrolysis, elimination, oxidation, reduction, and cyclization. [Pg.4]

The principal abiotic processes affecting americium in water is the precipitation and complex formation. In natural waters, americium solubility is limited by the formation of hydroxyl-carbonate (AmOHC03) precipitates. Solubility is unaffected by redox condition. Increased solubility at higher temperatures may be relevant in the environment of radionuclide repositories. In environmental waters, americium occurs in the +3 oxidation state oxidation-reduction reactions are not significant (Toran 1994). [Pg.166]

Nitrosoarenes are readily formed by the oxidation of primary N-hydroxy arylamines and several mechanisms appear to be involved. These include 1) the metal-catalyzed oxidation/reduction to nitrosoarenes, azoxyarenes and arylamines (144) 2) the 02-dependent, metal-catalyzed oxidation to nitrosoarenes (145) 3) the 02-dependent, hemoglobin-mediated co-oxidation to nitrosoarenes and methe-moglobin (146) and 4) the 0 2-dependent conversion of N-hydroxy arylamines to nitrosoarenes, nitrosophenols and nitroarenes (147,148). Each of these processes can involve intermediate nitroxide radicals, superoxide anion radicals, hydrogen peroxide and hydroxyl radicals, all of which have been observed in model systems (149,151). Although these radicals are electrophilic and have been suggested to result in DNA damage (151,152), a causal relationship has not yet been established. Nitrosoarenes, on the other hand, are readily formed in in vitro metabolic incubations (2,153) and have been shown to react covalently with lipids (154), proteins (28,155) and GSH (17,156-159). Nitrosoarenes are also readily reduced to N-hydroxy arylamines by ascorbic acid (17,160) and by reduced pyridine nucleotides (9,161). [Pg.360]

Aryl and alkyl hydroxylations, epoxide formation, oxidative dealkylation of heteroatoms, reduction, dehalogenation, desulfuration, deamination, aryl N-oxygenation, oxidation of sulfur Oxidation of nucleophilic nitrogen and sulfur, oxidative desulfurization Oxidation of aromatic hydrocarbons, phenols, amines, and sulfides oxidative dealkylation, reduction of N-oxides Alcohol oxidation reduction of ketones Oxidative deamination... [Pg.343]

The enzyme 3a-hydroxysteroid dehydrogenase plays a key role in this transport across the hepatocyte. A particularly elegant experiment demonstrated the role of the 3a-hydroxysteroid dehydrogenase, by using [ H] at the 3p hydrogen to show cyclical oxidation-reduction of the 3a-hydroxyl with no accumulation of 3-keto bile acids. Confirmation was obtained by use of indo-methacin, an inhibitor of 3a-hydroxysteroid dehydrogenase, which decreased... [Pg.20]

Subsequent investigations have shown that Raper s suggestion that dopachrome (4) and related aminochromes decompose by an internal oxidation-reduction process forming 5,6-dihydroxyindoles was essentially correct.73,118,120,184-137 The 5,6-dihydroxyindoles obtained from aminochromes such as dopachrome (4) and epino-chrome (27) (i.e. with no substitution in the 3-position) show only a relatively weak blue to blue-mauve fluorescence.118,120 The intense yellow-green fluorescence shown by the rearrangement products of aminochromes with a 3-hydroxyl group is due to the formation of... [Pg.240]

In plants, ascorbate is required as a substrate for the enzyme ascorbate peroxidase, which converts H202 to water. The peroxide is generated from the 02 produced in photosynthesis, an unavoidable consequence of generating 02 in a compartment laden with powerful oxidation-reduction systems (Chapter 19). Ascorbate is a also a precursor of oxalate and tartrate in plants, and is involved in the hydroxylation of Pro residues in cell wall proteins called extensins. Ascorbate is found in all subcellular compartments of plants, at concentrations of 2 to 25 mM—which is why plants are such good sources of vitamin C. [Pg.132]

Alkyl hydroperoxides are reduced readily to the corresponding alcohols many such reductions are quantitative and useful for analytical methods. Alkyl hydroperoxides have been used as oxidizing or hydroxylating reagents in organic syntheses. [Pg.1230]

The cis- 1,2-glycols, obtainable from the parent aromatic hydrocarbon by osmium tetroxide hydroxylation, can be converted to the corresponding trans-1,2-glycols by oxidation-reduction, using a mixture of dimethyl sulfoxide, sulfur trioxide, and pyridine, followed by lithium aluminum hydride reduction. The trans- 1,2-glycols can be dehydrated to arene oxides using DMF-DMA as mentioned above. Benzo[a]pyrene 4,5-oxide (28) and 7,12-dimethylbenz[a]anthracene 5,6-oxide (30) have been prepared by this method in 68 and 80% yields, respectively.18... [Pg.74]


See other pages where Oxidation-reduction hydroxyls is mentioned: [Pg.3668]    [Pg.333]    [Pg.74]    [Pg.3668]    [Pg.333]    [Pg.74]    [Pg.103]    [Pg.475]    [Pg.223]    [Pg.227]    [Pg.620]    [Pg.666]    [Pg.51]    [Pg.172]    [Pg.147]    [Pg.182]    [Pg.22]    [Pg.61]    [Pg.494]    [Pg.1025]    [Pg.67]    [Pg.149]    [Pg.32]    [Pg.224]    [Pg.215]    [Pg.139]    [Pg.293]    [Pg.952]    [Pg.23]    [Pg.1025]    [Pg.952]    [Pg.386]    [Pg.475]    [Pg.383]    [Pg.385]    [Pg.198]    [Pg.199]    [Pg.682]    [Pg.16]   


SEARCH



Hydroxyl radical oxidation-reduction cycle

Oxidative hydroxylation

© 2024 chempedia.info