Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation product, detection using

Chromatographic methods, notably hplc, are available for the simultaneous deterrnination of ascorbic acid as weU as dehydroascorbic acid. Some of these methods result in the separation of ascorbic acid from its isomers, eg, erythorbic acid and oxidation products such as diketogulonic acid. Detection has been by fluorescence, uv absorption, or electrochemical methods (83—85). Polarographic methods have been used because of their accuracy and their ease of operation. Ion exclusion (86) and ion suppression (87) chromatography methods have recently been reported. Other methods for ascorbic acid deterrnination include enzymatic, spectroscopic, paper, thin layer, and gas chromatographic methods. ExceUent reviews of these methods have been pubHshed (73,88,89). [Pg.17]

The selective epoxidation of ethylene by hydrogen peroxide ia a 1,4-dioxane solvent ia the presence of an arsenic catalyst is claimed. No solvent degradation is observed. Ethylene oxide is the only significant product detected. The catalyst used may be either elemental arsenic, an arsenic compound, or both. [Pg.461]

This method was applied to the determination of these oxidized nucleosides in salmon testes using [ Cio, N5]-8-hydroxy-2 -deoxyguanosine (L-8-OH-dG) as the internal standard (Figure 5.65). Four of the oxidized products were below the limits of detection of the method, while the concentration of 8-OH-dG was determined to be 0.93 ppb. [Pg.280]

A number of methods are available for following the oxidative behaviour of food samples. The consumption of oxygen and the ESR detection of radicals, either directly or indirectly by spin trapping, can be used to follow the initial steps during oxidation (Andersen and Skibsted, 2002). The formation of primary oxidation products, such as hydroperoxides and conjugated dienes, and secondary oxidation products (carbohydrides, carbonyl compounds and acids) in the case of lipid oxidation, can be quantified by several standard chemical and physical analytical methods (Armstrong, 1998 Horwitz, 2000). [Pg.331]

Quantitative analysis can be carried out by chromatography (in gas or liquid phase) during prolonged electrolysis of methanol. The main product is carbon dioxide,which is the only desirable oxidation product in the DMFC. However, small amounts of formic acid and formaldehyde have been detected, mainly on pure platinum electrodes. The concentrations of partially oxidized products can be lowered by using platinum-based alloy electrocatalysts for instance, the concentration of carbon dioxide increases significantly with R-Ru and Pt-Ru-Sn electrodes, which thus shows a more complete reaction with alloy electrocatalysts. [Pg.75]

Group C are catalysts that had high activity but low C.F. s. The NO conversions reached the maximum values at much lower temperatures of 623-643 K. The propene conversion was 100% at this point, and COj was the only deteaable oxidation product. In addition, significant amounts of NjO were detect. For some catalysts (such as catalyst B-1 OB), NjO was observed under the conditions used in Table 1. For others (such as catalyst B-15), it was observed at higher space velocities (see Table 2). [Pg.704]

With respect to using methyl viologen as electron relay, it might be of interest to note tlmt MV " can be oxidized by positive holes produced in illuminated colloidal semiconductors such as Ti02 Two oxidation products of MV are 1, 2 -di-hydro-l,r-dimethyl-2 -oxo-4,4 -bipyridylium chloride and 3,4-dihydro-l,r-dime-thyl-3-oxo-4,4 -bipyridylium chloride, which can readily be detected by their strong fluorescences at 516 nm and 528 nm, respectively. These products are also produced in the direct photolysis of MV " solutions and in the reaction of MV "" with OH radicals in homogeneous solution... [Pg.158]

Similarly, the m/z = 60 ion current signal was converted into the partial current for methanol oxidation to formic acid in a four-electron reaction (dash-dotted line in Fig. 13.3c for calibration, see Section 13.2). The resulting partial current of methanol oxidation to formic acid does not exceed about 10% of the methanol oxidation current. Obviously, the sum of both partial currents of methanol oxidation to CO2 and formic acid also does not reach the measured faradaic current. Their difference is plotted in Fig. 13.3c as a dotted line, after the PtO formation/reduction currents and pseudoca-pacitive contributions, as evident in the base CV of a Pt/Vulcan electrode (dotted line in Fig. 13.1a), were subtracted as well. Apparently, a signihcant fraction of the faradaic current is used for the formation of another methanol oxidation product, other than CO2 and formic acid. Since formaldehyde formation has been shown in methanol oxidation at ambient temperatures as well, parallel to CO2 and formic acid formation [Ota et al., 1984 Iwasita and Vielstich, 1986 Korzeniewski and ChUders, 1998 ChUders et al., 1999], we attribute this current difference to the partial current of methanol oxidation to formaldehyde. (Note that direct detection of formaldehyde by DBMS is not possible under these conditions, owing to its low volatility and interference with methanol-related mass peaks, as discussed previously [Jusys et al., 2003]). Assuming that formaldehyde is the only other methanol oxidation product in addition to CO2 and formic acid, we can quantitatively determine the partial currents of all three major products during methanol oxidation, which are otherwise not accessible. Similarly, subtraction of the partial current for formaldehyde oxidation to CO2 from the measured faradaic current for formaldehyde oxidation yields an additional current, which corresponds to the partial oxidation of formaldehyde to formic acid. The characteristics of the different Ci oxidation reactions are presented in more detail in the following sections. [Pg.428]

The role of oxygen on the allyhc oxidation of cyclohexene over the FePcCli6-S/TBHP catalytic system was determined by using 2 labelled oxygen. Since more than 70% of the main cyclohexene oxidation products, 4,11, and 12, had labelled oxygen, we can assure that molecular oxygen acts as co-oxidant. However, under the reaction conditions the over-oxidation of 4 seems to be unavoidable. Labelled 2, 3- epoxy-l-cyclohexanone (13), 2-cyclohexen-l, 4-dione (14), and 4-hydroxy-2-cyclohexen-l-one (15) were detected as reaction products. [Pg.439]

A number of the previously cited investigators3->2>5 9 have employed UV spectroscopy as an analytical tool for following PC degradation. We have found the measurement of UV spectra of weathered PC films by difference from an unexposed reference sample to be an extremely simple and useful analytical method. This nondestructive analysis allows the repetitive return of a sample to the exposure conditions and thus enables one to essentially perform continuous analyses on the same sample. This technique, of course, will not detect the formation of non-chromophoric products such as aliphatic oxidation products which may form during the degradation. [Pg.97]

In summary, chemiluminescence is a sensitive, non-invasive technique that can measure reactive oxidant production by small numbers of neutrophils indeed, neutrophil-derived chemiluminescence can be detected in as little as 5 fA of unfractionated human blood. The assay is suitable for automation using either multichannel luminometers or luminescence microtitre plate readers. Many researchers, however, have questioned the usefulness of this technique because of the uncertainty of the nature of the oxidant(s) that are detected. Nevertheless, in view of the recent developments made towards the identification of the oxidants measured and the assay s ability to detect intracellular oxidant production, it is has an important place in the phagocyte research laboratory. [Pg.179]


See other pages where Oxidation product, detection using is mentioned: [Pg.85]    [Pg.85]    [Pg.817]    [Pg.346]    [Pg.45]    [Pg.115]    [Pg.154]    [Pg.183]    [Pg.115]    [Pg.33]    [Pg.5]    [Pg.16]    [Pg.413]    [Pg.345]    [Pg.387]    [Pg.246]    [Pg.247]    [Pg.16]    [Pg.31]    [Pg.418]    [Pg.428]    [Pg.207]    [Pg.962]    [Pg.965]    [Pg.385]    [Pg.408]    [Pg.501]    [Pg.23]    [Pg.848]    [Pg.328]    [Pg.186]    [Pg.91]    [Pg.87]    [Pg.173]    [Pg.119]    [Pg.49]    [Pg.319]    [Pg.224]    [Pg.230]   


SEARCH



Detection using

Oxidation using

Products used

Useful products

© 2024 chempedia.info