Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation from primary alcohols

Aldehydes, RCHO (Sec. 7.9) (Sec. 7.9) (Sec. 8.4) (Sec. 17.7, 19.2) (Sec. 19.2, 21.6) from disubstituted alkenes by ozonolysis from 1,2-diols by cleavage with sodium periodate from terminal alkynes by hydroboration followed by oxidation from primary alcohols by oxidation from esters by reduction with DIB AH [HA1(i-Bu)2]... [Pg.861]

Aldehydes are made by oxidation from primary alcohols, and ketones are made by the oxidation of secondary alcohols (Figure 7.2.4). [Pg.352]

The development of this procedure stems from our recent work involving the oxidation of primary alcohol 1 to the carboxylic acid 2 ... [Pg.103]

Three potential routes from 14 to 2, shown in Scheme 2.6, were identified and evaluated. Option A was the original plan of preparation. Hydroboration of the carbon-carbon double bond in 14 followed by oxidation provided primary alcohol 19 (P=H). Beta-ketoester 19 was converted to the corresponding diazo compound... [Pg.49]

NO Reactions. The most informative derivitization reaction of oxidized polyolefins that we have found for product identification is that with NO. The details of NO reactions with alcohols and hydroperoxides to give nitrites and nitrates respectively have been reported previously, and only the salient features are discussed here (23). The IR absorption bands of primary, secondary and tertiary nitrites and nitrates are shown in Table I. After NO treatment, y-oxidized LLDPE shows a sharp sym.-nitrate stretch at 1276 cm-1 and an antisym. stretch at 1631 cm-1 (Fig. 1), consistent with the IR spectra of model secondary nitrates. Only a small secondary or primary nitrite peak was formed at 778 cm-1. NO treatment of y-oxidized LLDPE which had been treated by iodometry (all -OOH converted to -OH) showed strong secondary nitrite absorptions, but only traces of primary nitrite, from primary alcohol groups (distinctive 1657 cm-1 absorption). However, primary products were more prominent in LLDPE after photo-oxidation. [Pg.383]

ALDEHYDES FROM PRIMARY ALCOHOLS BY OXIDATION WITH CHROMIUM TRIOXIDE 1-HEPTANAL, 52, 5 ALDEHYDES FROM sym-TRITHIANE n-PENTADECANAL, 51, 39 Aldehydes, acetylenic, 54, 45 Aldehydes, aromatic, 54, 45 Aldehydes, benzyl, 54, 45 Aldehydes, olefinic, 54, 45... [Pg.54]

TEMPO 2,2,6,6-Tetramethylpiperidinyl-1-oxy (20 TEMPO) works as a mediator for the oxidation of primary alcohols to aldehydes. The oxidation of secondary alcohols is much slower than that of primary alcohols as exemplified by the oxidation of (19) to (21) (Scheme 7) [48]. Active species is the oxo-ammonium generated from TEMPO. [Pg.179]

ALDEHYDES FROM PRIMARY ALCOHOLS BY OXIDATION WITH CHROMIUM TRIOXIDE 1-HEPTANAL... [Pg.83]

Early electrochemical processes for the oxidation of alcohols to ketones or carboxylic acids used platinum or lead dioxide anodes, usually with dilute sulphuric acid as electrolyte. A divided cell is only necessary in the oxidation of primary alcohols to carboxylic acids if (he substrate possesses an unsaturated function, which could be reduced at the cathode [1,2]. Lead dioxide is the better anode material and satisfactory yields of the carboxylic acid have been obtained from oxidation of primary alcohols up to hexanol [3]. Aldehydes are intermediates in these reactions. Volatile aldehydes can be removed from the electrochemical cell in a... [Pg.261]

Good selectivity for the oxidation of primary alcohols in the presence of secondary ones can be achieved. By appropriate choice of the reaction conditions, overoxidation of the aldehyde from a primary alcohol to carboxylic acid can be minimized. Kinetic isotope effects in the range of 2 to 3 testify about the relevance of the H+-elimination step upon the overall reactivity . In general, the efficiency of oxidation of alkanols is slightly lower... [Pg.726]

NaClO, or else in the two-phase system but with a quaternary ammonium (viz. AUquat) ion as a phase-transfer catalyst, overoxidation to the corresponding carboxylic acid is obtained (entry 4). Therefore, by proper choice of the experimental conditions, a synthetically useful distinction in products formation can be made for the oxidation of primary alcohols, even though we are far from a satisfactory understanding of the reason behind this different behaviour. In fact TEMPO, as a well-known inhibitor of free-radical processes is allegedly responsible for the lack of overoxidation of an aldehyde to carboxylic acid (entry 3) this notwithstanding, TEMPO is also present under those conditions where the overoxidation does occur (eutry 4). Moreover, a commou teuet is that the formation of the hydrated form of an aldehyde (in water solution) prevents further oxidation to the carboxylic acid however, both entries 3 and 4 refer to water-organic solutions, and their... [Pg.734]

Typical examples are listed in Table 2.1. A few oxidations are effected by RuO but in general it is too powerful an oxidant for this purpose. The system RuCyaq. NaCl-CCy Pt anode oxidised benzyl alcohol to benzaldehyde and benzoic acid and p-anisaldehyde to p-anisic acid [24], and a wide range of primary alcohols and aldehydes were converted to carboxylic acids, secondary alcohols to ketones, l, -diols to lactones and keto acids from RuOj/aq. NaCl pH 4/Na(H3PO )/Pt electrodes (Tables 2.1-2.4). The system [RuO ] "/aq. K3(S303)/Adogen /CH3Cl3 oxidised benzyhc alcohols to aldehydes [30]. The oxidation catalyst TPAP (( Pr N)[RuO ]) (cf. 1.3.4) is extremely useful as an oxidant of primary alcohols to aldehydes and secondary alcohols to ketones without... [Pg.137]

Assuming that Ti(IV) is distributed statistically in all tetrahedral positions, it can be easily seen that even for crystallite sizes of 0,2 m the great majority of T1(IV) is located inside the pore structure. Assuming that every Ti(IV) is a catalytic centre with equal activity, diffusion limitations for molecules of different sizes should be observed. This is in fact the case. It has been shown [27] that the rate of oxidation of primary alcohols decreases regularly as the chain length increases, while for iso-butyl alcohol a sudden drop in the rate is observed. Also the reactivity order of olefins on TS-1 is different from the order observed with homogeneous electrophilic catalysts, while as already indicated very bulky molecules are unreactive when TS-1 is used as the catalyst. All these facts can only be interpreted as due to diffusion limitations of the larger molecules, which means that the catalytic sites are located inside the pore structure of the solid. [Pg.351]

NOC1 and an alcohol 9-9 From ozonides 9-10 Oxidative cleavage of enol ethers 9-13 Reaction between carboxylic acids and lead tetraacetate 9-18 Oxidation of ethers 9-22 Oxidation of primary alcohols or aldehydes... [Pg.1282]

Oxidations with chromium trioxide.6 Secondary alcohols can be oxidized to ketones in good yields by Cr03 in the presence of catalytic amounts of tetraalkyl-ammonium halides. Yields from oxidation of primary alcohols are moderate. [Pg.306]

Protection of primary alcohols p-Anisyl ethers are readily prepared from primary alcohols by the Mitsunobu reaction [P(C6H5)3 DEAD]. The ethers are stable to 3 N HC1 or 3 N NaOH at 100°, to Jones or PCC oxidation, and to LiAlH4. Deprotection is effected in 85-95% yield by oxidation with CAN in aqueous CH3CN. [Pg.181]


See other pages where Oxidation from primary alcohols is mentioned: [Pg.230]    [Pg.92]    [Pg.431]    [Pg.492]    [Pg.314]    [Pg.71]    [Pg.108]    [Pg.72]    [Pg.85]    [Pg.487]    [Pg.743]    [Pg.826]    [Pg.1141]    [Pg.37]    [Pg.45]    [Pg.52]    [Pg.344]    [Pg.412]    [Pg.412]    [Pg.33]    [Pg.254]    [Pg.265]    [Pg.70]    [Pg.224]    [Pg.124]    [Pg.672]    [Pg.9]   
See also in sourсe #XX -- [ Pg.698 ]




SEARCH



Alcohols, primary

Primary alcohols oxidation

Primary oxidation

© 2024 chempedia.info