Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Outer excitations

In X-ray spectra, when a deep core hole is excited, the excited shell occupies a very small volume and its spatial overlap with other core electrons is large, while with the orbital of the outer excited electron it is small. Under such conditions, the lifetime of the core vacancy becomes short one speaks of large core-level widths due to Auger broadening, which compete with autoionisation. This is why, in X-ray spectra near absorption edges due to inner-shell excitation, only the first few Rydberg members are observed. We return to this issue in section 11.2. [Pg.200]

Exciting developments based on electromagnetic induction raced along from that time, giving us the sophisticated products our everyday lives depend on. During most of the period productive uses for eddy current technology were few and few people believed in it as a usefiil tool eddy currents caused power loss in electrical circuits and, due to the skin effect, currents flowed only in the outer surfaces of conductors when the user had paid for all the copper in the cable. The speedometer and the familiar household power meter are examples of everyday uses that we may tend to forget about. The brakes on some models of exercise bicycle are based on the same principle. [Pg.272]

Figure Bl.24.14. A schematic diagram of x-ray generation by energetic particle excitation, (a) A beam of energetic ions is used to eject inner-shell electrons from atoms in a sample, (b) These vacancies are filled by outer-shell electrons and the electrons make a transition in energy in moving from one level to another this energy is released in the fomi of characteristic x-rays, the energy of which identifies that particular atom. The x-rays that are emitted from the sample are measured witli an energy dispersive detector. Figure Bl.24.14. A schematic diagram of x-ray generation by energetic particle excitation, (a) A beam of energetic ions is used to eject inner-shell electrons from atoms in a sample, (b) These vacancies are filled by outer-shell electrons and the electrons make a transition in energy in moving from one level to another this energy is released in the fomi of characteristic x-rays, the energy of which identifies that particular atom. The x-rays that are emitted from the sample are measured witli an energy dispersive detector.
The experiment is illustrated in figure B2.5.9. The initial pump pulse generates a localized wavepacket in the first excited state of Nal, which evolves with time. The potential well in the state is the result of an avoided crossing with the ground state. Every time the wavepacket passes this region, part of it crosses to the lower surface before the remainder is reflected at the outer wall of the potential. The crossing leads to... [Pg.2127]

Figure C3.6.7 Cubic (jir = 0) and linear (r = 0) nullclines for tire FitzHugh-Nagumo equation, (a) The excitable domain showing trajectories resulting from sub- and super-tlireshold excitations, (b) The oscillatory domain showing limit cycle orbits small inner limit cycle close to Hopf point large outer limit cycle far from Hopf point. Figure C3.6.7 Cubic (jir = 0) and linear (r = 0) nullclines for tire FitzHugh-Nagumo equation, (a) The excitable domain showing trajectories resulting from sub- and super-tlireshold excitations, (b) The oscillatory domain showing limit cycle orbits small inner limit cycle close to Hopf point large outer limit cycle far from Hopf point.
In atomic emission, the decrease in emission intensity when light emitted by excited state atoms in the center of a flame or plasma is absorbed by atoms in the outer portion of the flame. [Pg.438]

A number of chemiluminescent reactions have been studied by producing key reactants through pulsed electric discharge, by microwave dissociation, or by observing the reactions of atoms and free radicals produced in the inner cone of a laminar flame as they diffuse into the flame s cool outer cone (182,183). These are either combination reactions or atom-transfer reactions involving transfer of chlorine (184) or oxygen atoms (181,185—187), the latter giving excited oxides. [Pg.270]

Lighting. An important appHcation of clear fused quartz is as envelop material for mercury vapor lamps (228). In addition to resistance to deformation at operating temperatures and pressures, fused quartz offers ultraviolet transmission to permit color correction. Color is corrected by coating the iaside of the outer envelope of the mercury vapor lamp with phosphor (see Luminescent materials). Ultraviolet light from the arc passes through the fused quartz envelope and excites the phosphor, produciag a color nearer the red end of the spectmm (229). A more recent improvement is the iacorporation of metal haHdes ia the lamp (230,231). [Pg.512]

Both inner-shell (K and L) and outer-shell (M, N, etc.) electrons can be excited by the absorption of X rays and by the inelastic scattering of electrons. In either instance, at an electron binding energy characteristic of an element in a sample. [Pg.217]

Hollow carbon nanostructures are exciting new systems for research and for the design of potential nano-electronic devices. Their atomic structures are closely related to their outer shapes and are described by hex-agonal/pentagonal network configttrations. The surfaces of such structures are atomically smooth and perfect. The most prominent of these objects are ftil-lerenes and nanotubesjl]. Other such novel structures are carbon onions[2] and nanocones[3]. [Pg.65]

Rolling-element bearing defect frequencies are the same as their rotational frequencies, except for the BSF. If there is a defect on the inner race, the BPFl amplitude increases because the balls or rollers contact the defect as they rotate around the bearing. The BPFO is excited by defects in the outer race. [Pg.744]

The proposed model for the so-called sodium-potassium pump should be regarded as a first tentative attempt to stimulate the well-informed specialists in that field to investigate the details, i.e., the exact form of the sodium and potassium current-voltage curves at the inner and outer membrane surfaces to demonstrate the excitability (e.g. N, S or Z shaped) connected with changes in the conductance and ion fluxes with this model. To date, the latter is explained by the theory of Hodgkin and Huxley U1) which does not take into account the possibility of solid-state conduction and the fact that a fraction of Na+ in nerves is complexed as indicated by NMR-studies 124). As shown by Iljuschenko and Mirkin 106), the stationary-state approach also considers electron transfer reactions at semiconductors like those of ionselective membranes. It is hoped that this article may facilitate the translation of concepts from the domain of electrodes in corrosion research to membrane research. [Pg.240]

The question now is, what role do the K, L, M,. . . electrons play in generating the K, L, M,. . . series The answer is not obviously predictable from a knowledge of visible or ultraviolet spectra. Neither hydrogen nor helium has a K series, although each has K electrons. Why Because the K series is generated only when the K shell contains a hole that is filled by an electron that leaves one of the outer (L, M,. . . ) shells or the generation of the K series requires (1) the absence of a K electron, (2) the presence of an outer-shell electron whose transition to the K shell is permitted by the selection rules. This picture explains why—no matter what the method of excitation—all K lines have the same excitation threshold so that all K lines appear together if they appear at all. [Pg.30]

Vogler, A., Kunkeley, H. Photochemistry of Transition Metal Complexes Induced by Outer-Sphere Charge Transfer Excitation. 158, 1-30 (1990). [Pg.149]

If, however, one communicates to such a system an impulse capable of transferring the representative point JR to a point A outside the unstable cycle (point A, Fig. 6-6), it is clear that from that point the self-excitation can start and JR will approach the outer stable cycle. [Pg.332]

FIGURE 1.11 When white light shines through an atomic vapor, radiation is absorbed at frequencies that correspond to excitation energies of the atoms. Here is a small section of the spectrum of the Sun. in which atoms in its outer layers absorb the radiation from the incandescence below. Many of the lines have been ascribed to hydrogen, showing that hydrogen is present in the cooler outer layers of the Sun. [Pg.132]

Excited states of the hydrogen molecule may be formed from a normal hydrogen atom and a hydrogen atom in various excited states.2 For these the interelectronic interaction will be small, and the Burrau eigenfunction will represent the molecule in part with considerable accuracy. The properties of the molecule, in particular the equilibrium distance, should then approximate those of the molecule-ion for the molecule will be essentially a molecule-ion with an added electron in an outer orbit. This is observed in general the equilibrium distances for all known excited states but one (the second state in table 1) deviate by less than 10 per cent from that for the molecule-ion. It is hence probable that states 3,4, 5, and 6 are formed from a normal and an excited atom with n = 2, and that higher states are similarly formed. [Pg.54]

Evidence has been advanced8 that the neutral helium molecule which gives rise to the helium bands is formed from one normal and one excited helium atom. Excitation of one atom leaves an unpaired Is electron which can then interact with the pair of Is electrons of the other atom to form a three-electron bond. The outer electron will not contribute very much to the bond forces, and will occupy any one of a large number of approximately hydrogen-like states, giving rise to a roughly hydrogenlike spectrum. The small influence of the outer electron is shown by the variation of the equilibrium intemuclear distance within only the narrow limits 1.05-1.13 A. for all of the more than 25 known states of the helium molecule. [Pg.104]

These fissioning nuclei (such as 8tP°i2-211> formed by reaction of Bi209 and a deuteron) have a nearly spherical normal-state structure, resembling that of the doubly magic nucleus seP m208, with an outer core of 16 spherons and an inner core of 4 spherons, shown in Fig. 6. The nucleus is excited, with vibrational energy about 25 Mev (for bismuth bombard-... [Pg.822]

From a theoretical perspective, the object that is initially created in the excited state is a coherent superposition of all the wavefunctions encompassed by the broad frequency spread of the laser. Because the laser pulse is so short in comparison with the characteristic nuclear dynamical time scales of the motion, each excited wavefunction is prepared with a definite phase relation with respect to all the others in the superposition. It is this initial coherence and its rate of dissipation which determine all spectroscopic and collisional properties of the molecule as it evolves over a femtosecond time scale. For IBr, the nascent superposition state, or wavepacket, spreads and executes either periodic vibrational motion as it oscillates between the inner and outer turning points of the bound potential, or dissociates to form separated atoms, as indicated by the trajectories shown in Figure 1.3. [Pg.9]

C08-0003. The outer layers of the sun contain He atoms in various excited states. One excited state contains one 1 S electron and one 3 p electron. Based on the effectiveness of screening, estimate the ionization energy of the 3 p electron In this excited atom. [Pg.512]

Figure 35. Electronic excitation of a LiH wave packet from the outer classical turning point 6ao) of the ground X S" state. The X —> B transition is considered. The initial wavepacket is the shifted ground vibrational state. Taken from Ref. [37]. Figure 35. Electronic excitation of a LiH wave packet from the outer classical turning point 6ao) of the ground X S" state. The X —> B transition is considered. The initial wavepacket is the shifted ground vibrational state. Taken from Ref. [37].
Figure 39. Pump-dump control of NaK molecule by using two quadratically chirped pulses. The initial state taken as the ground vibrational eigenstate of the ground state X is excited by a quadratically chirped pulse to the excited state A. This excited wavepacket is dumped at the outer turning point at t 230 fs by the second quadratically chirped pulse. The laser parameters used are = 2.75(1.972) X 10-2 eVfs- 1.441(1.031) eV, and / = 0.15(0.10)TWcm-2 for the first (second) pulse. The two pulses are centered at t = 14.5 fs and t2 = 235.8 fs, respectively. Both of them have a temporal width i = 20 fs. (See color insert.) Taken from Ref. [37]. Figure 39. Pump-dump control of NaK molecule by using two quadratically chirped pulses. The initial state taken as the ground vibrational eigenstate of the ground state X is excited by a quadratically chirped pulse to the excited state A. This excited wavepacket is dumped at the outer turning point at t 230 fs by the second quadratically chirped pulse. The laser parameters used are = 2.75(1.972) X 10-2 eVfs- 1.441(1.031) eV, and / = 0.15(0.10)TWcm-2 for the first (second) pulse. The two pulses are centered at t = 14.5 fs and t2 = 235.8 fs, respectively. Both of them have a temporal width i = 20 fs. (See color insert.) Taken from Ref. [37].
Figure 40. Pump-dump control of NaK by using two quadraticaUy chirped pulses. The initial state and the first step of pump are the same as in Fig. 39. The excited wave packet is now dumped at R 6.5cio on the way to the outer turning point. The parameters of the second pulse are a ) = 1.929 X 10 eVfs , = 1.224eV, and I = 0.lOTWcm . The second pulse is centered at... Figure 40. Pump-dump control of NaK by using two quadraticaUy chirped pulses. The initial state and the first step of pump are the same as in Fig. 39. The excited wave packet is now dumped at R 6.5cio on the way to the outer turning point. The parameters of the second pulse are a ) = 1.929 X 10 eVfs , = 1.224eV, and I = 0.lOTWcm . The second pulse is centered at...

See other pages where Outer excitations is mentioned: [Pg.199]    [Pg.199]    [Pg.1493]    [Pg.131]    [Pg.642]    [Pg.438]    [Pg.778]    [Pg.447]    [Pg.143]    [Pg.202]    [Pg.66]    [Pg.137]    [Pg.176]    [Pg.339]    [Pg.52]    [Pg.194]    [Pg.47]    [Pg.156]    [Pg.54]    [Pg.759]    [Pg.67]    [Pg.180]    [Pg.346]    [Pg.134]    [Pg.90]    [Pg.172]    [Pg.9]    [Pg.192]   
See also in sourсe #XX -- [ Pg.41 , Pg.49 , Pg.53 , Pg.59 ]




SEARCH



Excited state outer sphere electron transfer reactions

© 2024 chempedia.info