Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Stereoselective Aldol Reactions

To address limitations in the use of glyceraldehyde acetonide (43) as a three-carbon chiral building block, butane-2,3-diacetal-protected glyceraldehyde (44, R1 = R2 = H) has been prepared. It undergoes diastereoselective aldol reactions with a range of carbonyl compounds esters, thioesters, and ketones. The work has been extended (g) to other derivatives such as the a-substituted aldehyde (44, R1 = Me, allyl) and the methyl ketone (44, R2 = Me).122a,b [Pg.16]

A highly diastereoselective aldol of an a-CF3-substituted enolate has opened up a (g) new route to trifluoromethyl-substituted chiral centres.123 [Pg.16]

A new thiol auxiliary (45, R = COEt) participates in boron-mediated anti-aldol reactions with aldehydes with high yield and de.124 Reaction of the product with (g nucleophiles displaces it (in the form of the thiol, 45 R = H), converting the aldol product under mild conditions into esters, thiolates, phosphonates, alcohols, or acids. [Pg.17]

Hydrogen bonding and steric effects have been investigated in a theoretical study of the origin of the diastereoselectivity in the remote 1,5-stereoinduction of boron aldol (g) reactions of /3-alkoxy methyl ketones 125 high levels of 1,5-anti-stereocontrol have been achieved in such reactions of tf-methyl-a-alkoxy methyl ketones, giving both Felkin and anti-Felkin products.126 (g) [Pg.17]

A catalytic enantio- and diastereo-selective aldol reaction of ketones with ketene (g) silyl acetals, H2C=C(OTMS)-OMe, gives fair to good yields and ee.129 With further substitution of the vinyl function, the reaction is diastereoselective, up to 97%. A highly developed catalyst/promoter protocol is employed a copper fluoride complex is combined with a Taniaphos auxiliary (a chiral ferrocenyldiphosphine), plus (EtO)3SiF. Evidence for the formation of species (EtO)4 SiF (n 2) as active [Pg.17]


Reagents are available nowadays for acyl anions other than (4). Thus when Heathcock made the ketone (16), which he used in stereoselective aldol reactions, he needed a-hydroxy ketone (17), This required synthon (18) for which an acetylene is not a good choice as there are as yet no means of controlling the reglo-selectivity of hydration of (19). [Pg.260]

Highly stereoselective aldol reactions of lithium ester enolates (LiCR1 R2CC>2R3) with (/0-2-(/ -tolylsulfiny I (cyclohexanone have been attributed to intermediacy of tricoordinate lithium species which involve the enolate and the sulfinyl and carbonyl oxygens of the substrates.43 The O-metallated /<-hydroxyalkanoatcs formed by aldol-type reaction of carbonyl compounds with enolates derived from esters of alkanoic acids undergo spontaneous intramolecular cyclization to /1-lactones if phenyl rather than alkyl esters are used the reaction has also been found to occur with other activated derivatives of carboxylic acids.44... [Pg.335]

In other studies, analysis of the products of reaction between formaldehyde and guanosine at moderate pH shows a new adduct—formed by condensing two molecules of each reactant—which has implications for the mechanism of DNA cross-linking by formaldehyde,17 while the kinetics of the mutarotation of N-(/ -chlorophcnyl)-//-D-glucopyranosylamine have been measured in methanolic benzoate buffers.18 For a stereoselective aldol reaction of a ketene acetal, see the next section. [Pg.4]

To achieve a stereoselective aldol reaction that does not depend on the structural type of the reacting carbonyl compounds, many efforts have been made to use boron enolates. Based on early studies by Mukaiyama et al.8a and Fenzl and K0ster,8b in 1979, Masamune and others reported a highly diastereoselective aldol reaction involving dialkylboron enolates (enol borinates)9... [Pg.51]

In the last fifteen years macrolides have been the major target molecules for complex stereoselective total syntheses. This choice has been made independently by R.B. Woodward and E.J. Corey in Harvard, and has been followed by many famous fellow Americans, e.g., G. Stork, K.C. Nicolaou, S. Masamune, C.H. Heathcock, and S.L. Schreiber, to name only a few. There is also no other class of compounds which is so suitable for retrosynthetic analysis and for the application of modem synthetic reactions, such as Sharpless epoxidation, Noyori hydrogenation, and stereoselective alkylation and aldol reactions. We have chosen a classical synthesis by E.J. Corey and two recent syntheses by A.R. Chamberlin and S.L. Schreiber as examples. [Pg.319]

Butyraldehyde undergoes stereoselective crossed aldol addition with diethyl ketone [96-22-0] ia the presence of a staimous triflate catalyst (14) to give a predominantiy erythro product (3). Other stereoselective crossed aldol reactions of //-butyraldehyde have been reported (15). [Pg.378]

Aldol Reactions of Boron Enolates. The matter of increasing stereoselectivity in the addition step can be addressed by using other reactants. One important version of the aldol reaction involves the use of boron enolates.15 A cyclic TS similar to that for lithium enolates is involved, and the same relationship exists between enolate configuration and product stereochemistry. In general, the stereoselectivity is higher than for lithium enolates. The O-B bond distances are shorter than for lithium enolates, and this leads to a more compact structure for the TS and magnifies the steric interactions that control stereoselectivity. [Pg.71]

Compound 17 is the so-called (+)-Prelog-Djerassi lactonic acid derived via the degradation of either methymycin or narbomycin. This compound embodies important architectural features common to a series of macrolide antibiotics and has served as a focal point for the development of a variety of new stereoselective syntheses. Another preparation of compound 17 is shown in Scheme 3-7.11 Starting from 8, by treating the boron enolate with an aldehyde, 20 can be synthesized via an asymmetric aldol reaction with the expected stereochemistry at C-2 and C-2. Treating the lithium enolate of 8 with an electrophile affords 19 with the expected stereochemistry at C-5. Note that the stereochemistries in the aldol reaction and in a-alkylation are opposite each other. The combination of 19 and 20 gives the final product 17. [Pg.141]

This chapter has introduced the aldol and related allylation reactions of carbonyl compounds, the allylation of imine compounds, and Mannich-type reactions. Double asymmetric synthesis creates two chiral centers in one step and is regarded as one of the most efficient synthetic strategies in organic synthesis. The aldol and related reactions discussed in this chapter are very important reactions in organic synthesis because the reaction products constitute the backbone of many important antibiotics, anticancer drugs, and other bioactive molecules. Indeed, study of the aldol reaction is still actively pursued in order to improve reaction conditions, enhance stereoselectivity, and widen the scope of applicability of this type of reaction. [Pg.188]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

In addition to the above hydrolysis reactions, dinuclear approach to providing joint Lewis acid activation and nucleophile activation has been applied to other organic reactions (Figure 6.14) including stereoselective ring-opening of epoxides (18) [65, 66], stereoselective aldol condensation (19) [67, 68], and stereoselective reduction (20) reactions [69]. [Pg.144]

Methyl-2-trimethylsilyloxypentan-3-one (1) is the prototype member of a series of a-trimethyls1lyloxy ketones that are useful for stereoselective aldol addition reactions (eq l).2 6-Hydroxy ketones 2 may be converted into 6-hydroxy acids,2 g-hydroxy aldehydes, and other e-hydroxy ketones. ... [Pg.85]

Early investigations of asymmetric aldol reactions with chiral carbohydrate auxliliaries were carried out by Heathcock [152] and Bandraege [159], but often only low stereoselectivities were observed. In additional studies. Banks et al. [73] used oxazinone auxiliaries for aldol reactions, which had been employed for other asymmetric reactions. The lithium enolate of the A-acylated oxazinone 226 reacted with benzaldehyde, furnishing exclusively the iyn-aldols 227A and 227B in a ratio of 10 1 (Scheme 10.76). [Pg.484]

Direct organocatalytic asymmetric aldol reaction of a-aminoaldehydes 35 with other substituted aldehydes furnishes S-hydroxy-a-aminoaldehydes with high anti-stereoselectivity. This procedure is of importance for the synthesis of a-aminosugars and derivatives. Additionally, the oxidation of aldehydes gives rise to highly enantiomerically enriched ant/-/3-hydroxy-a-amino acids (O Scheme 28) [156]. [Pg.880]


See other pages where Other Stereoselective Aldol Reactions is mentioned: [Pg.16]    [Pg.16]    [Pg.272]    [Pg.134]    [Pg.4]    [Pg.335]    [Pg.253]    [Pg.294]    [Pg.294]    [Pg.244]    [Pg.49]    [Pg.46]    [Pg.1037]    [Pg.21]    [Pg.1231]    [Pg.219]    [Pg.49]    [Pg.104]    [Pg.142]    [Pg.50]    [Pg.67]    [Pg.791]    [Pg.217]    [Pg.353]    [Pg.365]    [Pg.117]    [Pg.53]    [Pg.78]    [Pg.613]    [Pg.219]    [Pg.358]    [Pg.594]    [Pg.217]   


SEARCH



Aldol reaction stereoselectivity

Reaction stereoselectivity

Stereoselective aldol reactions

Stereoselective reactions

Stereoselectivity aldol

© 2024 chempedia.info