Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Other Mixing Methods

A small magnetic stirring bar (2 mm dia. x 7 mm) was used to enhance mixing in a PDMS-glass chamber (50 iL). This led to a three- to four fold increase in the DNA hybridization efficiency [490], [Pg.99]

Other micromixers based on various principles have also been constructed. These principles include vortex [492], eddy diffusion [493-501,654,955], rotary stirring [502], turbulence [495,503], EK instability [504—506], chaotic advection [248,507-513], magnetic stirring [514], bubble-induced acoustic mixing [515], and piezoelectric actuation [516,517]. [Pg.99]


Other mixing methods have been employed with considerable success for monitoring reaction rates of intermediate magnitude. [Pg.529]

A free flowing powder is the expected outcome of a production of dry blend. This is important because dryblend may be transported throughout the equipment and it should not stick to the surfaces of transporting equipment and process equipment. Some processes discussed in this chapter made direct use of dry blends but some require further processing by other mixing methods. Figure 14.9 shows one such process in which after... [Pg.484]

For larger systems, various approximate schemes have been developed, called mixed methods as they treat parts of the system using different levels of theory. Of interest to us here are quantuin-seiniclassical methods, which use full quantum mechanics to treat the electrons, but use approximations based on trajectories in a classical phase space to describe the nuclear motion. The prefix quantum may be dropped, and we will talk of seiniclassical methods. There are a number of different approaches, but here we shall concentrate on the few that are suitable for direct dynamics molecular simulations. An overview of other methods is given in the introduction of [21]. [Pg.252]

Quantum chemical methods, exemplified by CASSCF and other MCSCF methods, have now evolved to an extent where it is possible to routinely treat accurately the excited electronic states of molecules containing a number of atoms. Mixed nuclear dynamics, such as swarm of trajectory based surface hopping or Ehrenfest dynamics, or the Gaussian wavepacket based multiple spawning method, use an approximate representation of the nuclear wavepacket based on classical trajectories. They are thus able to use the infoiination from quantum chemistry calculations required for the propagation of the nuclei in the form of forces. These methods seem able to reproduce, at least qualitatively, the dynamics of non-adiabatic systems. Test calculations have now been run using duect dynamics, and these show that even a small number of trajectories is able to produce useful mechanistic infomiation about the photochemistry of a system. In some cases it is even possible to extract some quantitative information. [Pg.311]

Other mixed esters, eg, cellulose acetate valerate [55962-79-3] cellulose propionate valerate [67351-41-17, and cellulose butyrate valerate [53568-56-2] have been prepared by the conventional anhydride sulfuric acid methods (25). Cellulose acetate isobutyrate [67351-38-6] (44) and cellulose propionate isobutyrate [67351-40-0] (45) have been prepared with a 2inc chloride catalyst. Large amounts of catalyst and anhydride are required to provide a soluble product, and special methods of delayed anhydride addition are necessary to produce mixed esters containing the acetate moiety. Mixtures of sulfuric acid and perchloric acid are claimed to be effective catalysts for the preparation of cellulose acetate propionate in dichi oromethane solution at relatively low temperatures (46) however, such acid mixtures are considered too corrosive for large-scale productions. [Pg.252]

The CVD catalyst exhibits good catalytic performance for the selective oxidation/ammoxida-tion of propene as shown in Table 8.5. Propene is converted selectively to acrolein (major) and acrylonitrile (minor) in the presence of NH3, whereas cracking to CxHy and complete oxidation to C02 proceeds under the propene+02 reaction conditions without NH3. The difference is obvious. HZ has no catalytic activity for the selective oxidation. A conventional impregnation Re/HZ catalyst and a physically mixed Re/HZ catalyst are not selective for the reaction (Table 8.5). Note that NH3 opened a reaction path to convert propene to acrolein. Catalysts prepared by impregnation and physical mixing methods also catalyzed the reaction but the selectivity was much lower than that for the CVD catalyst. Other zeolites are much less effective as supports for ReOx species in the selective oxidation because active Re clusters cannot be produced effectively in the pores of those zeolites, probably owing to its inappropriate pore structure and acidity. [Pg.246]

Pyrolysis is a type of gasification that breaks down the biomass in oxygen deficient environments, at temperatures of up to 400°F. This process is used to produce charcoal. Since the temperature is lower than other gasification methods, the end products are different. The slow heating produces almost equal proportions of gas, liquid and charcoal, but the output mix can be adjusted by changing the input, the temperature, and the time in the reactor. The main gases produced are hydrogen and carbon... [Pg.92]

In this section, we introduce the model Hamiltonian pertaining to the molecular systems under consideration. As is well known, a curve-crossing problem can be formulated in the adiabatic as well as in a diabatic electronic representation. Depending on the system under consideration and on the specific method used, both representations have been employed in mixed quantum-classical approaches. While the diabatic representation is advantageous to model potential-energy surfaces in the vicinity of an intersection and has been used in mean-field type approaches, other mixed quantum-classical approaches such as the surfacehopping method usually employ the adiabatic representation. [Pg.250]

The enzyme horseradish peroxidase is a hemoprotein and the region of the Soret band exhibits large differences between the position and extinction coefficients of the uncombined and combined forms. Both forms were first studied by spectrophotometry, but the E—S complexes were 0 labile that they could not be examined extensively by any other spectroscopic method. Using rapid-scanning spectrophotometry and rapid mixing, Chance was able to distinguish the spectra of compound I and II and determine the various rate constants of the multistep reaction with rather poor precision. [Pg.250]


See other pages where Other Mixing Methods is mentioned: [Pg.297]    [Pg.402]    [Pg.98]    [Pg.402]    [Pg.171]    [Pg.276]    [Pg.297]    [Pg.402]    [Pg.98]    [Pg.402]    [Pg.171]    [Pg.276]    [Pg.1136]    [Pg.9]    [Pg.414]    [Pg.214]    [Pg.146]    [Pg.509]    [Pg.97]    [Pg.390]    [Pg.192]    [Pg.464]    [Pg.317]    [Pg.322]    [Pg.533]    [Pg.451]    [Pg.142]    [Pg.267]    [Pg.308]    [Pg.372]    [Pg.1136]    [Pg.388]    [Pg.413]    [Pg.143]    [Pg.494]    [Pg.235]    [Pg.575]    [Pg.407]    [Pg.84]    [Pg.781]    [Pg.795]    [Pg.96]    [Pg.307]    [Pg.326]    [Pg.193]   


SEARCH



Others methods

© 2024 chempedia.info