Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmium elements

The element is silvery white with a metallic luster its density is exceeded only by that of platinum, iridium, and osmium, and its melting point is exceeded only by that of tungsten and... [Pg.134]

Iridium is not attacked by any of the acids nor by aqua regia, but is attacked by molten salts, such as NaCl and NaCN. The specific gravity of iridium is only very slightly lower than osmium, which is generally credited as the heaviest known element. Calculations of the densities of iridium and osmium from the space lattices give values of 22.65 and 22.61 g/cm 3, respectively. These values may be more reliable than actual physical measurements. At present, therefore, we know that either iridium or osmium is the densest known element, but the data do not yet allow selection between the two. [Pg.138]

The element forms an alloy with osmium which is used for tipping pens and compass bearings. [Pg.139]

Chemical ingenuity in using the properties of the elements and their compounds has allowed analyses to be carried out by processes analogous to the generation of hydrides. Osmium tetroxide is very volatile and can be formed easily by oxidation of osmium compounds. Some metals form volatile acetylacetonates (acac), such as iron, zinc, cobalt, chromium, and manganese (Figure 15.4). Iodides can be oxidized easily to iodine (another volatile element in itself), and carbonates or bicarbonates can be examined as COj after reaction with acid. [Pg.100]

Other volatile compounds of elements can be used to transport samples into the plasma flame. For example, hydride reduction of mercury compounds gives the element (Hg), which is very volatile. Osmium can be oxidized to its volatile tetroxide (OSO4), and some elements can be measured as their volatile acetylacetonate (acac) derivatives, as with Zn(acac)2. [Pg.396]

Laser isotope separation techniques have been demonstrated for many elements, including hydrogen, boron, carbon, nitrogen, oxygen, sHicon, sulfur, chlorine, titanium, selenium, bromine, molybdenum, barium, osmium, mercury, and some of the rare-earth elements. The most significant separation involves uranium, separating uranium-235 [15117-96-1], from uranium-238 [7440-61-1], (see Uranium and uranium compounds). The... [Pg.19]

The platinum-group metals (PGMs), which consist of six elements in Groups 8— 10 (VIII) of the Periodic Table, are often found collectively in nature. They are mthenium, Ru rhodium, Rh and palladium, Pd, atomic numbers 44 to 46, and osmium. Os indium, Ir and platinum, Pt, atomic numbers 76 to 78. Corresponding members of each triad have similar properties, eg, palladium and platinum are both ductile metals and form active catalysts. Rhodium and iridium are both characterized by resistance to oxidation and chemical attack (see Platinum-GROUP metals, compounds). [Pg.162]

Selected physical properties of rhenium are summarized ia Table 1. The metal is silvery-white and has a metallic luster. It has a high density (21.02 g/cm ). Only platinum, iridium, and osmium have higher densities. The melting poiat of rhenium is higher than that of all other elements except tungsten (mp 3410°C) and carbon (mp 3550°C). [Pg.161]

There are also reactions which show stereoselectivity primarily because of mechanism rather than spatial bias of substrate. For instance, the conversion of an olefin to a 1,2-diol by osmium tetroxide mechanistically is a cycloaddition process which is strictly suprafacial. The hydroxylation transform has elements of both substrate and mechanism control, as illustrated by the retrosynthetic conversion of 146 to 147. The validity of the retrosynthetic removal of both... [Pg.48]

Abundances of lUPAC (the International Union of Pure and Applied Chemistry). Their most recent recommendations are tabulated on the inside front fly sheet. From this it is clear that there is still a wide variation in the reliability of the data. The most accurately quoted value is that for fluorine which is known to better than I part in 38 million the least accurate is for boron (1 part in 1500, i.e. 7 parts in [O ). Apart from boron all values are reliable to better than 5 parts in [O and the majority arc reliable to better than I part in 10. For some elements (such as boron) the rather large uncertainty arises not because of experimental error, since the use of mass-spcctrometric measurements has yielded results of very high precision, but because the natural variation in the relative abundance of the 2 isotopes °B and "B results in a range of values of at least 0.003 about the quoted value of 10.811. By contrast, there is no known variation in isotopic abundances for elements such as selenium and osmium, but calibrated mass-spcctrometric data are not available, and the existence of 6 and 7 stable isotopes respectively for these elements makes high precision difficult to obtain they are thus prime candidates for improvement. [Pg.17]

Ruthenium and osmium are generally found in the metallic state along with the other platinum metals and the coinage metals. The major source of the platinum metals are the nickel-copper sulfide ores found in South Africa and Sudbury (Canada), and in the river sands of the Urals in Russia. They are rare elements, ruthenium particularly so, their estimated abundances in the earth s crustal rocks being but O.OOOl (Ru) and 0.005 (Os) ppm. However, as in Group 7, there is a marked contrast between the abundances of the two heavier elements and that of the first. [Pg.1071]

Table 25.1 Some properties of the elements iron, ruthenium and osmium... Table 25.1 Some properties of the elements iron, ruthenium and osmium...
Ruthenium and osmium have no oxides comparable to those of iron and, indeed, the lowest oxidation state in which they form oxides is -t-4. RUO2 is a blue to black solid, obtained by direct action of the elements at 1000°C, and has the rutile (p. 961) structure. The intense colour has been suggested as arising from the presence of small amounts of Ru in another oxidation state, possibly - -3. 0s02 is a yellowish-brown solid, usually prepared by heating the metal at 650°C in NO. It, too, has the rutile structure. [Pg.1080]

Ruthenium and osmium form only disulfides. These have the pyrite structure and are diamagnetic semiconductors this implies that they contain M . RuSc2, RuTc2, OsSc2 and OsTc2 are very similar. All 6 dichalcogenides are obtained directly from the elements. [Pg.1081]

Both rhodium (m.p. 1976°C, b.p. 3730°C) and iridium (m.p. 2410°C, b.p. 4130°C) are unreactive silvery metals, iridium being considerably more dense (22.65gem-3) than rhodium (12.41 gem-3), the densest element known apart from osmium. Both form fee (ccp) lattices and, like the other platinum metals, are ductile and malleable. Neither is affected by aqua regia and they only react with oxygen and the halogens at red heat. [Pg.78]

Both of these elements are silver-white lustrous metals with high melting (ruthenium 2310°C, osmium 3900°C) and boiling (3900 and 5510°C, respectively) points. As usual, the 5d metal is much more dense (ruthenium 12.45, osmium 22.59gem-3) both adopt hep structures osmium is the densest metal known. The metals are unreactive, insoluble in all acids, even aqua regia. Ruthenium tends to form a protective coating of the dioxide and is not attacked by oxygen below 600°C nor by chlorine or fluorine below... [Pg.416]

Ruthenium nowadays finds many uses in the electronics industry, particularly for making resistor tracks. It is used as an ingredient in various catalysts and, importantly, in electrode materials, e.g. Ru02-coated titanium elements in the chloralkali industry. Osmium tetroxide is a very useful organic oxidant and, classically, is used as a tissue stain. Both elements are employed in making certain platinum alloys. [Pg.417]

The first catalytic study of Reaction 1 was published in 1902 by Sabatier and Senderens (1) who reported that nickel was an excellent catalyst. Since that time, the active catalysts were identified as the transition elements with unfilled 3d, 4d, and 5d orbitals iron, cobalt, nickel, ruthenium, rhenium, palladium, osmium, indium, and platinum, as well as some elements that can assume these configurations (e.g., silver). These are discussed later. For practical operation of this process,... [Pg.11]

The most successful class of active ingredient for both oxidation and reduction is that of the noble metals silver, gold, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Platinum and palladium readily oxidize carbon monoxide, all the hydrocarbons except methane, and the partially oxygenated organic compounds such as aldehydes and alcohols. Under reducing conditions, platinum can convert NO to N2 and to NH3. Platinum and palladium are used in small quantities as promoters for less active base metal oxide catalysts. Platinum is also a candidate for simultaneous oxidation and reduction when the oxidant/re-ductant ratio is within 1% of stoichiometry. The other four elements of the platinum family are in short supply. Ruthenium produces the least NH3 concentration in NO reduction in comparison with other catalysts, but it forms volatile toxic oxides. [Pg.79]

F.13 Osmium forms a number of molecular compounds with carbon monoxide. One light-vellow compound was analyzed to give the following elemental composition 15.89% C, 21.18% O, and 62.93% Os. (a) What is the empirical formula of this compound (b) From the mass spectrum of the compound, the molecule was determined to have a molar mass of 907 g-mol 1. What is its molecular formula ... [Pg.75]

On the basis of your knowledge of periodicity, place each of the following sets of elements in order of decreasing ionization energy. Explain your choices, (a) Selenium, oxygen, tellurium (b) gold, tantalum, osmium (c) lead, barium, cesium. [Pg.177]

A technologically important effect of the lanthanide contraction is the high density of the Period 6 elements (Fig. 16.5). The atomic radii of these elements are comparable to those of the Period 5 elements, but their atomic masses are about twice as large so more mass is packed into the same volume. A block of iridium, for example, contains about as many atoms as a block of rhodium of the same volume. However, each iridium atom is nearly twice as heavy as a rhodium atom, and so the density of the sample is nearly twice as great. In fact, iridium is one of the two densest elements its neighbor osmium is the other. Another effect of the contraction is the low reactivity—the nobility —of gold and platinum. Because their valence electrons are relatively close to the nucleus, they are tightly bound and not readily available for chemical reactions. [Pg.778]

Identify the element with the higher first ionization energy in each of the following pairs (a) iron and nickel (b) nickel and copper (c) osmium and platinum (d) nickel and palladium ... [Pg.813]

Pauling, L. Evidence from Bond Lengths and Bond Angles for Enneacovalence of Cobalt, Rhodium, Iridium, Iron, Ruthenium, and Osmium in Compounds with Elements of Medium Electronegativity Proc. Natl. Acad. Sci. (USA) 1984, 81, 1918-1921. [Pg.340]


See other pages where Osmium elements is mentioned: [Pg.152]    [Pg.88]    [Pg.65]    [Pg.152]    [Pg.88]    [Pg.65]    [Pg.290]    [Pg.318]    [Pg.221]    [Pg.176]    [Pg.176]    [Pg.40]    [Pg.491]    [Pg.16]    [Pg.19]    [Pg.1074]    [Pg.1074]    [Pg.1076]    [Pg.1077]    [Pg.16]    [Pg.17]    [Pg.416]    [Pg.416]    [Pg.45]    [Pg.360]    [Pg.387]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Platinum group elements osmium

The Elements Iron, Ruthenium and Osmium

© 2024 chempedia.info