Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organometallic compounds oxides

Halogens and their covalent compounds Metal carbonyls Organometallic compounds Oxidizing agents Polychlorinated dibenzofuran Polychlorinated dibenzo-p-dioxin... [Pg.52]

Table 19.3 Oxidation states of the d-block metals the most stable states are marked in blue. Tabulation of zero oxidation states refers to their appearance in compounds of the metal. In organometallic compounds, oxidation states of less than zero are encountered (see Chapter 23). An oxidation state enclosed in [ ] is rare. Table 19.3 Oxidation states of the d-block metals the most stable states are marked in blue. Tabulation of zero oxidation states refers to their appearance in compounds of the metal. In organometallic compounds, oxidation states of less than zero are encountered (see Chapter 23). An oxidation state enclosed in [ ] is rare.
Kemmitt, R. D. W., Burgess, J., Organometallic Compounds Oxidative Additions and Reductive Elimination, Inorg. React. Mech. 2 [1972] 350/64. [Pg.5]

The introduction of additional alkyl groups mostly involves the formation of a bond between a carbanion and a carbon attached to a suitable leaving group. S,.,2-reactions prevail, although radical mechanisms are also possible, especially if organometallic compounds are involved. Since many carbanions and radicals are easily oxidized by oxygen, working under inert gas is advised, until it has been shown for each specific reaction that air has no harmful effect on yields. [Pg.19]

Regioselectivity of C—C double bond formation can also be achieved in the reductiv or oxidative elimination of two functional groups from adjacent carbon atoms. Well estab llshed methods in synthesis include the reductive cleavage of cyclic thionocarbonates derivec from glycols (E.J. Corey, 1968 C W. Hartmann, 1972), the reduction of epoxides with Zn/Nal or of dihalides with metals, organometallic compounds, or Nal/acetone (seep.lS6f), and the oxidative decarboxylation of 1,2-dicarboxylic acids (C.A. Grob, 1958 S. Masamune, 1966 R.A. Sheldon, 1972) or their r-butyl peresters (E.N. Cain, 1969). [Pg.142]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

Grignard reagents react with ethylene oxide to yield primary alcohols containing two more carbon atoms than the alkyl halide from which the organometallic compound was prepared... [Pg.632]

Organometallic Compounds. Ruthenium, predominately in the oxidation states 0 and +2, forms numerous mononuclear and polynuclear organometaUic compounds. A few examples of compounds in both higher and lower oxidation states also exist. The chemistry of polynuclear mthenium complexes is extensive and has been reviewed (53—59). [Pg.177]

Organometallic Compounds. Osmium forms numerous mononuclear and polynuclear organometaUic complexes, primarily iu lower oxidation states. There are many complexes of carbon monoxide, such as [Os(CO)3] [16406-49-8], [Os(CO) H2] [22372-70-9], [Os3(CO)2 H2] [56398-24-4],... [Pg.179]

Organometallic Compounds. The predominant oxidation states of indium in organometalUcs are +1 and +3. Iridium forms mononuclear and polynuclear carbonyl complexes including [IrCl(P(C3H3)3)2(CO)2] [14871-41-1], [Ir2014(00)2] [12703-90-1], [Ir4(CO)22] [18827-81 -1], and the conducting, polymeric [IrCl(CO)3] [32594-40-4]. Isonitnle and carbene complexes are also known. [Pg.181]

Zirconium tetrachloride is instantly hydrolyzed in water to zirconium oxide dichloride octahydrate [13520-92-8]. Zirconium tetrachloride exchanges chlorine for 0x0 bonds in the reaction with hydroxylic ligands, forming alkoxides from alcohols (see Alkoxides, METAl). Zirconium tetrachloride combines with many Lewis bases such as dimethyl sulfoxide, phosphoms oxychloride and amines including ammonia, ethers, and ketones. The zirconium organometalLic compounds ate all derived from zirconium tetrachloride. [Pg.435]

H2Te undergoes oxidative addition to certain organometallic compounds, e.g. [Re(rj -C5Me5)-... [Pg.767]

Organometallic compounds apart, oxidation states below - -2 are best represented by complexes with tris-bidentate nitrogen-donor ligands such as 2,2 -bipyridyl. Reduction by LiAlH4 in thf yields tris(bipyridyl) complexes in which the formal oxidation state of vanadium is -1-2 to —1. Magnetic moments are compatible with low-spin configurations of the metal but. [Pg.998]

Complexes in which the metal exhibits still lower oxidation states (such as I, 0, —I, —II) occur amongst the organometallic compounds (pp. 1006 and 1037). [Pg.1035]

With rare exceptions, such as [Fe(bipy)3]°, oxidation states lower than +2 are represented only by carbonyls, phosphines, and their derivatives. These will be considered together with other organometallic compounds in Section 25.3.6. [Pg.1098]

Besides [Ni(CO)4] and organometallic compounds discussed in the next section, nickel is found in the formally zero oxidation state with ligands such as CN and phosphines. Reduction of K2[Ni (CN)4] with potassium in liquid ammonia precipitates yellow K4[Ni (CN)4], which is sensitive to aerial oxidation. Being... [Pg.1166]


See other pages where Organometallic compounds oxides is mentioned: [Pg.42]    [Pg.218]    [Pg.42]    [Pg.218]    [Pg.154]    [Pg.559]    [Pg.1290]    [Pg.180]    [Pg.42]    [Pg.831]    [Pg.96]    [Pg.294]    [Pg.99]    [Pg.1133]   
See also in sourсe #XX -- [ Pg.202 ]




SEARCH



Lanthanide organometallic compounds 2 oxidation state

Lower oxidation states organometallic compounds

Molecular oxygen, oxidation organometallic compound

Organometallic Complexes as Catalysts in Oxidation of C—H Compounds

Organometallic compounds in layered chalcogenides, oxohalides, and oxides

Organometallic compounds oxidation

Organometallic compounds oxidation number

Organometallic compounds oxidation states

Organometallic oxidant

Zero oxidation state organometallic compounds

© 2024 chempedia.info