Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Organic compounds carbonyl group

The carbonyl group in aldehydes (RCHO) and ketones (RCOR ) is one of the frequently encountered functionalities in the composition of organic compounds. This group has no active hydrogen atoms, excluding the cases of high content of enols for /3-dicarbonyl compounds (/3-diketones, esters of /3-ketocarboxylic acids, etc.) ... [Pg.501]

They are stable compounds and are not decomposed by dilute acids or alkalis. They are frequently employed in synthetic organic chemistry for protecting the carbonyl group. [Pg.254]

Hydrazine and its alkylated derivatives are used as rocket fuels in organic chemistry, substituted phenylhydrazines are important in the characterisation of sugars and other compounds, for example aldehydes and ketones containing the carbonyl group C=0. [Pg.224]

The chemistry of the carbonyl group is probably the single most important aspect of organic chemical reactivity Classes of compounds that contain the carbonyl group include many derived from carboxylic acids (acyl chlorides acid anhydrides esters and amides) as well as the two related classes discussed m this chapter aldehydes and ketones... [Pg.741]

Organic compounds containing a hydroxyl, carbonyl, or amine functional group adjacent to a hydoxyl or carbonyl group can be oxidized using metaperiodate, 104 , as an oxidizing titrant. [Pg.347]

Polarography is used extensively for the analysis of metal ions and inorganic anions, such as lOg and NOg. Organic compounds containing easily reducible or oxidizable functional groups also can be studied polarographically. Functional groups that have been used include carbonyls, carboxylic acids, and carbon-carbon double bonds. [Pg.516]

Aldol Addition and Related Reactions. Procedures that involve the formation and subsequent reaction of anions derived from active methylene compounds constitute a very important and synthetically useful class of organic reactions. Perhaps the most common are those reactions in which the anion, usually called an enolate, is formed by removal of a proton from the carbon atom alpha to the carbonyl group. Addition of this enolate to another carbonyl of an aldehyde or ketone, followed by protonation, constitutes aldol addition, for example... [Pg.471]

Fluorinated Acids. This class of compounds is characterized by the strength of the fluorocarbon acids, eg, CF COOH, approaching that of mineral acids. This property results from the strong inductive effect of fluorine and is markedly less when the fluorocarbon group is moved away from the carbonyl group. Generally, their reactions are similar to organic acids and they find apphcations, particularly trifluoroacetic acid [76-05-1] and its anhydride [407-25-0] as promotors in the preparation of esters and ketones and in nitration reactions. [Pg.269]

Ketones are a class of organic compounds that contain one or more carbonyl groups bound to two aUphatic, aromatic, or aUcycbc substituents, and are represented by the general formula... [Pg.485]

Fig. 4. Example of international patent classification (stmctured, hierarchical), where numbers ia square brackets identify edition of IPC ia which class was first used. In C07c 45/50, the first four characters iadicate section C (chemistry). Class 07 (organic chemistry), and subclass c (acycHc compounds) the number 45 /00 iadicates the preparation of compounds having carbonyl groups bound only to carbon or hydrogen atoms by any method and 45 /50... Fig. 4. Example of international patent classification (stmctured, hierarchical), where numbers ia square brackets identify edition of IPC ia which class was first used. In C07c 45/50, the first four characters iadicate section C (chemistry). Class 07 (organic chemistry), and subclass c (acycHc compounds) the number 45 /00 iadicates the preparation of compounds having carbonyl groups bound only to carbon or hydrogen atoms by any method and 45 /50...
A cyanohydrin is an organic compound that contains both a cyanide and a hydroxy group on an aUphatic section of the molecule. Cyanohydrias are usually a-hydroxy nitriles which are the products of base-cataly2ed addition of hydrogen cyanide to the carbonyl group of aldehydes and ketones. The lUPAC name for cyanohydrias is based on the a-hydroxy nitrile name. Common names of cyanohydrias are derived from the aldehyde or ketoae from which they are formed (Table 1). [Pg.410]

A second type of absorption that is important in UV-VIS examination of organic compounds is the transition of the carbonyl (C=0) group. One of the electrons... [Pg.567]

Although many carbonyl derivatives act as acyl cation equivalents, R(C=0)" in synthetic chemistry, the inherent polarity of the carbonyl group makes it much more difficult to find compounds that will act as equivalents of acyl anions, R(C=0) . Since the 1960s, major progress has been made in this area, and there are now a wide variety of compound types that can react in this way. As in so many areas of organic chemistry, heterocyclic compounds take pride of place and form the basis of many of the most useful methods. In recent years there has been particular interest in developing chiral acyl anion equivalents that will show high... [Pg.89]

The [ 2 + 4]-cycloaddition reaction of aldehydes and ketones with 1,3-dienes is a well-established synthetic procedure for the preparation of dihydropyrans which are attractive substrates for the synthesis of carbohydrates and other natural products [2]. Carbonyl compounds are usually of limited reactivity in cycloaddition reactions with dienes, because only electron-deficient carbonyl groups, as in glyoxy-lates, chloral, ketomalonate, 1,2,3-triketones, and related compounds, react with dienes which have electron-donating groups. The use of Lewis acids as catalysts for cycloaddition reactions of carbonyl compounds has, however, led to a new era for this class of reactions in synthetic organic chemistry. In particular, the application of chiral Lewis acid catalysts has provided new opportunities for enantioselec-tive cycloadditions of carbonyl compounds. [Pg.156]

The addition of the a-carbon of an enolizable aldehyde or ketone 1 to the carbonyl group of a second aldehyde or ketone 2 is called the aldol reaction It is a versatile method for the formation of carbon-carbon bonds, and is frequently used in organic chemistry. The initial reaction product is a /3-hydroxy aldehyde (aldol) or /3-hydroxy ketone (ketol) 3. A subsequent dehydration step can follow, to yield an o ,/3-unsaturated carbonyl compound 4. In that case the entire process is also called aldol condensation. [Pg.4]

When analytes lack the selectivity in the new polar organic mode or reversed-phase mode, typical normal phase (hexane with ethanol or isopropanol) can also be tested. Normally, 20 % ethanol will give a reasonable retention time for most analytes on vancomycin and teicoplanin, while 40 % ethanol is more appropriate for ristocetin A CSP. The hexane/alcohol composition is favored on many occasions (preparative scale, for example) and offers better selectivity for some less polar compounds. Those compounds with a carbonyl group in the a or (3 position to the chiral center have an excellent chance to be resolved in this mode. The simplified method development protocols are illustrated in Fig. 2-6. The optimization will be discussed in detail later in this chapter. [Pg.38]

Ketone (Chapter 19 introduction) A compound with two organic substituents bonded to a carbonyl group, R2C = 0. [Pg.1244]


See other pages where Organic compounds carbonyl group is mentioned: [Pg.298]    [Pg.310]    [Pg.27]    [Pg.1365]    [Pg.211]    [Pg.231]    [Pg.1072]    [Pg.1136]    [Pg.144]    [Pg.567]    [Pg.570]    [Pg.469]    [Pg.67]    [Pg.495]    [Pg.451]    [Pg.151]    [Pg.62]    [Pg.412]    [Pg.765]    [Pg.416]    [Pg.38]    [Pg.41]    [Pg.236]    [Pg.144]    [Pg.258]    [Pg.1105]    [Pg.396]    [Pg.1014]    [Pg.1014]    [Pg.75]    [Pg.227]   
See also in sourсe #XX -- [ Pg.478 , Pg.478 , Pg.479 ]

See also in sourсe #XX -- [ Pg.478 , Pg.478 , Pg.479 , Pg.479 ]

See also in sourсe #XX -- [ Pg.479 , Pg.479 ]




SEARCH



Organic carbonyl compounds

Organic compounds grouped

Organic groups

© 2024 chempedia.info