Based on the experimental data kinetic parameters (reaction orders, activation energies, and preexponential factors) as well as heats of reaction can be estimated. As the kinetic models might not be strictly related to the true reaction mechanism, an optimum found will probably not be the same as the real optimum. Therefore, an iterative procedure, i.e. optimization-model updating-optimization, is used, which lets us approach the real process optimum reasonably well. To provide the initial set of data, two-level factorial design can be used. [Pg.323]

Table 4.4 Optimal kinetic parameter estimates (A, in M s and Ea, in kj/mol) and uncertainties (1 standard deviation) |

The kinetic parameters associated with the synthesis of norbomene are determined by using the experimental data obtained at elevated temperatures and pressures. The reaction orders with respect to cyclopentadiene and ethylene are estimated to be 0.96 and 0.94, respectively. According to the simulation results, the conversion increases with both temperature and pressure but the selectivity to norbomene decreases due to the formation of DMON. Therefore, the optimal reaction conditions must be selected by considering these features. When a CSTR is used, the appropriate reaction conditions are found to be around 320°C and 1200 psig with 4 1 mole ratio of ethylene to DCPD in the feed stream. Also, it is desirable to have a Pe larger than 50 for a dispersed PFR and keep the residence time low for a PFR with recycle stream. [Pg.712]

These four procedures are all recommended to be performed in the order shown to achieve optimal parameter estimation followed by a final validation of the gravity sewer process model (Figure 7.7). In the case of design of a new sewer system, procedure number 4 is, of course, not relevant and kinetic parameters for the sewer biofilm must be evaluated and selected based on information from comparative systems. [Pg.182]

In this work, the proposed optimization procedure is based on the combination of different optimization techniques, to know real-coded GA (RGA), Placket-Burman (PB) design, and QN. The approach is applicable when the stmeture of a kinetic model has been set up and the kinetic parameters should be estimated. [Pg.667]

For a fixed molar ratio (ns/riAh equal to 0.05887, the temperature as applied in experiment E4, and a batch time of 347.8 dimensionless units, the feed rate of B (and thus the feed time) was optimized by computation to find tj = 323.19 dimensionless units. A run was carried out at these conditions. The data collected from this experiment were then used for re-estimation of the kinetic parameters. The new kinetic model was used to evaluate the new optimum feed rate for the same total amount of B. The optimum batch time reduced to 275.36 and the feed time to 242.75 units. Table 5.4-19 summarizes the results for three successive optimizations and re-estimations. Evidently, even a very simplified kinetic model can be successfully used in search for an optimum provided that kinetic parameters are updated based on every subsequent run carried out at the optimum conditions evaluated from the preceding set of kinetic parameters. [Pg.325]

© 2019 chempedia.info