Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Open tubular system

The process of band broadening (Figure 2.1) is measured by the column efficiency or the number of theoretical plates N, equation (2.24)), which is equal to the square of the ratio of the retention time to the standard deviation of the peak. In theory, the value of N for packed columns has only a small dependency on k and may be considered to be a constant for a particular column. Column efficiency in open-tubular systems decreases markedly with increased retention. For this reason open-tubular liquid chromatography systems must be operated at relatively low kf values (see section 2.5.S.2). [Pg.23]

In general, (Q) and ( ) will be equal, but the general case is assumed, where they are not. Equation (37) gives an explicit and accurate expression for the retention volume of a solute. The importance of each function in the expression will depend on the physical properties of the chromatographic system. At one extreme, using an open tubular column in GC, then... [Pg.37]

Having established that a finite volume of sample causes peak dispersion and that it is highly desirable to limit that dispersion to a level that does not impair the performance of the column, the maximum sample volume that can be tolerated can be evaluated by employing the principle of the summation of variances. Let a volume (Vi) be injected onto a column. This sample volume (Vi) will be dispersed on the front of the column in the form of a rectangular distribution. The eluted peak will have an overall variance that consists of that produced by the column and other parts of the mobile phase conduit system plus that due to the dispersion from the finite sample volume. For convenience, the dispersion contributed by parts of the mobile phase system, other than the column (except for that from the finite sample volume), will be considered negligible. In most well-designed chromatographic systems, this will be true, particularly for well-packed GC and LC columns. However, for open tubular columns in GC, and possibly microbore columns in LC, where peak volumes can be extremely small, this may not necessarily be true, and other extra-column dispersion sources may need to be taken into account. It is now possible to apply the principle of the summation of variances to the effect of sample volume. [Pg.194]

In a packed column the HETP depends on the particle diameter and is not related to the column radius. As a result, an expression for the optimum particle diameter is independently derived, and then the column radius determined from the extracolumn dispersion. This is not true for the open tubular column, as the HETP is determined by the column radius. It follows that a converse procedure must be employed. Firstly the optimum column radius is determined and then the maximum extra-column dispersion that the column can tolerate calculated. Thus, with open tubular columns, the chromatographic system, in particular the detector dispersion and the maximum sample volume, is dictated by the column design which, in turn, is governed by the nature of the separation. [Pg.392]

Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society. Figure 12.23 SFC-SFC analysis, involving a rotaiy valve interface, of a standard coal tar sample (SRM 1597). Two fractions were collected from the first SFC separation (a) and then analyzed simultaneously in the second SFC system (h) cuts a and h are taken between 20.2 and 21.2 min, and 38.7 and 40.2 min, respectively. Peak identification is as follows 1, tii-phenylene 2, chrysene 3, henzo[g/ i]perylene 4, antliracene. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al, Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switcliing interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society.
Figure 12.24 Schematic diagram of the multidimensional packed capillary to open tubular column SFC-SFC system. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al., Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switching interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society. Figure 12.24 Schematic diagram of the multidimensional packed capillary to open tubular column SFC-SFC system. Reprinted from Analytical Chemistry, 62, Z. Juvancz et al., Multidimensional packed capillary coupled to open tubular column supercritical fluid chromatography using a valve-switching interface , pp. 1384-1388, copyright 1990, with permission from the American Chemical Society.
Several Interface designs are available for GC/MS and selection depends on the circumstances of the experiment [3-6,8,25,26]. Column flow rates of 1-2 ml/min (adjusted to STP) into the ion source are compatible with modem mass spectrometer vacuxim systems. This is also the optimum floi te range for open tubular capillary columns of conventional lensions. Coupling such columns to a modern mass spectromet er, therefore, presents... [Pg.486]

For an understanding of band broadening in chromatographic systems, the linear velocity of the mobile phase is more important than the column volumetric flow rate. The mobile phase velocity and flow rate in an open tubular column are simply related by... [Pg.528]

For fast reactions (i.e., < 1 min.), open tubular reactors are commonly used. They simply consist of a mixing device and a coiled stainless steel or Teflon capillary tube of narrow bore enclosed in a thermostat. The length of the capillary tube and the flow rate through it control the reaction time. Reagents such as fluorescamine and o-phthalaldehyde are frequently used in this type of system to determine primary amines, amino acids, indoles, hydrazines, etc., in biological and environmental samples. [Pg.956]

SFC-SFC is more suitable than LC-LC for quantitation purposes, in view of the lack of a suitable mass-sensitive, universal detector in LC. Group quantitation can be achieved by FID. The ideal SFC-SFC system would consist of a short (10-30 cm) packed-capillary primary column, interfaced to a long (5-10m) open-tubular column, but such a combination is difficult to realise, due to the different flow-rates required for each column type. Coupled SFC-SFC is often configured with a solute concentration device prior to valve switching on to the SFC. The main approaches to this concentration stage are the use of absorbent material or cryofocusing. Davies el at. [924] first introduced two-dimensional cSFC (cSFC-cSFC), and its use has been reported [925,926]. [Pg.550]

Lopez-Avila V, Baldin E, Benedicto J, et al. 1990. Application of open-tubular columns to SW-846 GC methods. Las Vegas, NV U S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory. EPA/600/S4-90/021. [Pg.156]

C is an apparatus constant. Usually C, a, and KH are temperature dependent, but a and Kh more so than C. Also In (a) behaves analogously to VPIE and normally increases as temperature falls according to 1/T or 1 /T2 (Chapter 5), while KH typically increases exponentially as temperature falls. These two criteria conflict so far as the best choice of temperature is concerned, and for good separations it is necessary to determine the optimum compromise. With a and KH set by the selection of operating system and temperature, resolution is proportional to Vg/Vc. For maximum resolution the vapor volume is increased by electing open tubular columns, i.e. wetted wall columns with minimal liquid loading, and therefore minimal capacity. [Pg.279]

The open tubular technique requires less sample preparation, shorter conditioning times, and, therefore, enables faster switching to other separation systems. [Pg.98]


See other pages where Open tubular system is mentioned: [Pg.258]    [Pg.26]    [Pg.27]    [Pg.28]    [Pg.29]    [Pg.33]    [Pg.347]    [Pg.258]    [Pg.26]    [Pg.27]    [Pg.28]    [Pg.29]    [Pg.33]    [Pg.347]    [Pg.501]    [Pg.106]    [Pg.107]    [Pg.417]    [Pg.418]    [Pg.5]    [Pg.37]    [Pg.328]    [Pg.28]    [Pg.37]    [Pg.279]    [Pg.322]    [Pg.322]    [Pg.325]    [Pg.638]    [Pg.664]    [Pg.696]    [Pg.910]    [Pg.456]    [Pg.459]    [Pg.550]    [Pg.631]    [Pg.100]    [Pg.648]    [Pg.62]    [Pg.202]    [Pg.55]    [Pg.490]   
See also in sourсe #XX -- [ Pg.346 ]




SEARCH



Open system

Open tubular

© 2024 chempedia.info