Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins natural synthesis

The special potential for constructing double bonds stereoselectively, often necessary in natural material syntheses, makes the Wittig reaction a valuable alternative compared to partial hydrogenation of acetylenes. It is used in the synthesis of carotenoids, fragrance and aroma compounds, terpenes, steroides, hormones, prostaglandins, pheromones, fatty acid derivatives, plant substances, and a variety of other olefinic naturally occurring compounds. Because of the considerable volume of this topic we would like to consider only selected paths of the synthesis of natural compounds in the following sections and to restrict it to reactions of phosphoranes (ylides) only. [Pg.86]

We will then leave alkaloids and move back in time to a target that became important in the 1960 s, Cecropia juvenile hormone (Introduction-5). Approaches to this deceptively simple structure constitute a study in stereoselective tri-substituted olefin synthesis. Given the importance of olefins (both synthesis and chemistry of) to modern organic synthesis, I think that a visit to this old topic will be instructive, and will help set the stage for a discussion of targets of more contemporary interest. In addition, it will focus on the important role synthesis plays in structure determination, and the stimulus natural products can provide for the development of new synthetic methodology. [Pg.20]

This reaction is an efficient method of synthesis of cyclopropanes. Singlet car-benes add at the double bond stereospecifically unlike triplet carbenes. The structure of olefin, naturally, affects the addition rate. Below we present the relative rates of CCl2 addition in dimethoxy hane at 353 K with respect to cyclohexene... [Pg.238]

Gas purifications H2O/olefin-containing cracked gas, natural gas, air, synthesis gas, etc sHica, alumina, zeoHte... [Pg.269]

Efficient enantioselective asymmetric hydrogenation of prochiral ketones and olefins has been accompHshed under mild reaction conditions at low (0.01— 0.001 mol %) catalyst concentrations using rhodium catalysts containing chiral ligands (140,141). Practical synthesis of several optically active natural... [Pg.180]

Subsequent dehydrohalogenation afforded exclusively the desired (Z)-olefin of the PGI2 methyl ester. Conversion to the sodium salt was achieved by treatment with sodium hydroxide. The sodium salt is crystalline and, when protected from atmospheric moisture and carbon dioxide, is indefinitely stable. A variation of this synthesis started with a C-5 acetylenic PGF derivative and used a mercury salt cataly2ed cyclization reaction (219). Although natural PGI has not been identified, the syntheses of both (6R)- and (65)-PGl2, [62777-90-6] and [62770-60-7], respectively, have been described, as has that of PGI3 (104,216). [Pg.164]

Synthesis and Manufacture of Amines. The chemical and busiaess segments of amines (qv) and quaternaries are so closely linked that it is difficult to consider these separately. The majority of commercially produced amines origiaate from three amine raw materials natural fats and oils, a-olefins, and fatty alcohols. Most large commercial manufacturers of quaternary ammonium compounds are fully back-iategrated to at least one of these three sources of amines. The amines are then used to produce a wide array of commercially available quaternary ammonium compounds. Some iadividual quaternary ammonium compounds can be produced by more than one synthetic route. [Pg.381]

The first synthesis of trisubstituted olefins from acetylenes was applied to the total synthesis of several natural products as outlined on the next page. [Pg.146]

Natural gas and crude oils are the main sources for hydrocarbon intermediates or secondary raw materials for the production of petrochemicals. From natural gas, ethane and LPG are recovered for use as intermediates in the production of olefins and diolefms. Important chemicals such as methanol and ammonia are also based on methane via synthesis gas. On the other hand, refinery gases from different crude oil processing schemes are important sources for olefins and LPG. Crude oil distillates and residues are precursors for olefins and aromatics via cracking and reforming processes. This chapter reviews the properties of the different hydrocarbon intermediates—paraffins, olefins, diolefms, and aromatics. Petroleum fractions and residues as mixtures of different hydrocarbon classes and hydrocarbon derivatives are discussed separately at the end of the chapter. [Pg.29]

Although the biosynthetic cascade hypothesis predicts the co-occurrence of endiandric acids D (4) and A (1) in nature, the former compound was not isolated until after its total synthesis was completed in the laboratory (see Scheme 6). Our journey to endiandric acid D (4) commences with the desilylation of key intermediate 22 to give alcohol 31 in 95% yield. The endo side chain is then converted to a methyl ester by hydrolysis of the nitrile to the corresponding acid with basic hydrogen peroxide, followed by esterification with diazomethane to afford intermediate 32 in 92% overall yield. The exo side chain is then constructed by sequential bromination, cyanide displacement, ester hydrolysis (33), reduction, and olefination (4) in a straight-... [Pg.272]

The biogenetic scheme for endiandric acids also predicts the plausible existence in nature of endiandric acids E (5), F (6), and G (7). Even though they are still undiscovered, their synthesis has been achieved (Scheme 6). For endiandric acids E and F, key intermediate 24 is converted, by conventional means, to aldehyde 35 via intermediate 34. Oxidation of 35 with silver oxide in the presence of sodium hydroxide results in the formation of endiandric acid E (5) in 90 % yield, whereas elaboration of the exo side chain by standard olefination (85 % yield) and alkaline hydrolysis (90 % yield) furnishes endiandric acid F (6). The construction of the remaining compound, endiandric acid G (7), commences with the methyl ester of endiandric acid D (36) and proceeds by partial reduction to the corresponding aldehyde, followed by olefination and hydrolysis with aqueous base as shown in Scheme 6. [Pg.275]

Epoxides are often encountered in nature, both as intermediates in key biosynthetic pathways and as secondary metabolites. The selective epoxidation of squa-lene, resulting in 2,3-squalene oxide, for example, is the prelude to the remarkable olefin oligomerization cascade that creates the steroid nucleus [7]. Tetrahydrodiols, the ultimate products of metabolism of polycyclic aromatic hydrocarbons, bind to the nucleic acids of mammalian cells and are implicated in carcinogenesis [8], In organic synthesis, epoxides are invaluable building blocks for introduction of diverse functionality into the hydrocarbon backbone in a 1,2-fashion. It is therefore not surprising that chemistry of epoxides has received much attention [9]. [Pg.447]

We will focus on the development of ruthenium-based metathesis precatalysts with enhanced activity and applications to the metathesis of alkenes with nonstandard electronic properties. In the class of molybdenum complexes [7a,g,h] recent research was mainly directed to the development of homochi-ral precatalysts for enantioselective olefin metathesis. This aspect has recently been covered by Schrock and Hoveyda in a short review and will not be discussed here [8h]. In addition, several important special topics have recently been addressed by excellent reviews, e.g., the synthesis of medium-sized rings by RCM [8a], applications of olefin metathesis to carbohydrate chemistry [8b], cross metathesis [8c,d],enyne metathesis [8e,f], ring-rearrangement metathesis [8g], enantioselective metathesis [8h], and applications of metathesis in polymer chemistry (ADMET,ROMP) [8i,j]. Application of olefin metathesis to the total synthesis of complex natural products is covered in the contribution by Mulzer et al. in this volume. [Pg.228]


See other pages where Olefins natural synthesis is mentioned: [Pg.161]    [Pg.694]    [Pg.401]    [Pg.137]    [Pg.427]    [Pg.1650]    [Pg.485]    [Pg.137]    [Pg.655]    [Pg.31]    [Pg.97]    [Pg.421]    [Pg.244]    [Pg.346]    [Pg.290]    [Pg.25]    [Pg.54]    [Pg.156]    [Pg.200]    [Pg.218]    [Pg.283]    [Pg.286]    [Pg.336]    [Pg.381]    [Pg.382]    [Pg.407]    [Pg.506]    [Pg.693]    [Pg.694]    [Pg.807]    [Pg.948]    [Pg.258]    [Pg.270]    [Pg.271]    [Pg.272]    [Pg.275]   
See also in sourсe #XX -- [ Pg.651 , Pg.652 , Pg.653 , Pg.654 , Pg.655 , Pg.656 , Pg.657 , Pg.658 , Pg.659 , Pg.660 , Pg.661 , Pg.662 , Pg.663 ]

See also in sourсe #XX -- [ Pg.651 , Pg.652 , Pg.653 , Pg.654 , Pg.655 , Pg.656 , Pg.657 , Pg.658 , Pg.659 , Pg.660 , Pg.661 , Pg.662 , Pg.663 ]




SEARCH



Catalytic Enantioselective Olefin Metathesis and Natural Product Synthesis

Olefin metathesis natural product synthesis

Olefin synthesis

Olefinations, synthesis

Olefins diene natural product synthesis

Olefins natural product synthesis

© 2024 chempedia.info