Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin complexes rhodium-catalyzed

Rhodium catalyzed carbonylations of olefins and methanol can be operated in the absence of an alkyl iodide or hydrogen iodide if the carbonylation is operated in the presence of iodide-based ionic liquids. In this chapter, we will describe the historical development of these non-alkyl halide containing processes beginning with the carbonylation of ethylene to propionic acid in which the omission of alkyl hahde led to an improvement in the selectivity. We will further describe extension of the nonalkyl halide based carbonylation to the carbonylation of MeOH (producing acetic acid) in both a batch and continuous mode of operation. In the continuous mode, the best ionic liquids for carbonylation of MeOH were based on pyridinium and polyalkylated pyridinium iodide derivatives. Removing the highly toxic alkyl halide represents safer, potentially lower cost, process with less complex product purification. [Pg.329]

Shortly after the key mechanistic papers on rhodium-catalyzed hydroboration, Marks reported a hydroboration reaction catalyzed by lanthanide complexes that proceeds by a completely different mechanism.63 Simple lanthanide salts such as Sml3 were also shown to catalyze the hydroboration of a range of olefins.64 The mechanism for this reaction was found to be complex and unknown. As in other reactions catalyzed by lanthanides, it is proposed that the entire catalytic cycle takes place without any changes in oxidation state on the central metal. [Pg.842]

Curtin-Hammett principle, 23 industrial applications, 8, 26 mechanism, 21 phosphine ligands, 7, 18 reaction conditions, 18 scope and limitations, 27 Wilkinson complex, 17 Rhodium-catalyzed olefin isomerization ab initio calculations, 110... [Pg.197]

Rhodium(II) acetate catalyzes C—H insertion, olefin addition, heteroatom-H insertion, and ylide formation of a-diazocarbonyls via a rhodium carbenoid species (144—147). Intramolecular cyclopentane formation via C—H insertion occurs with retention of stereochemistry (143). Chiral rhodium (TT) carboxamides catalyze enantioselective cyclopropanation and intramolecular C—N insertions of CC-diazoketones (148). Other reactions catalyzed by rhodium complexes include double-bond migration (140), hydrogenation of aromatic aldehydes and ketones to hydrocarbons (150), homologation of esters (151), carbonylation of formaldehyde (152) and amines (140), reductive carbonylation of dimethyl ether or methyl acetate to 1,1-diacetoxy ethane (153), decarbonylation of aldehydes (140), water gas shift reaction (69,154), C—C skeletal rearrangements (132,140), oxidation of olefins to ketones (155) and aldehydes (156), and oxidation of substituted anthracenes to anthraquinones (157). Rhodium-catalyzed hydrosilation of olefins, alkynes, carbonyls, alcohols, and imines is facile and may also be accomplished enantioselectively (140). Rhodium complexes are moderately active alkene and alkyne polymerization catalysts (140). In some cases polymer-supported versions of homogeneous rhodium catalysts have improved activity, compared to their homogenous counterparts. This is the case for the conversion of alkenes direcdy to alcohols under oxo conditions by rhodium—amine polymer catalysts... [Pg.181]

Abstract The applications of hybrid DFT/molecular mechanics (DFT/MM) methods to the study of reactions catalyzed by transition metal complexes are reviewed. Special attention is given to the processes that have been studied in more detail, such as olefin polymerization, rhodium hydrogenation of alkenes, osmium dihydroxylation of alkenes and hydroformylation by rhodium catalysts. DFT/MM methods are shown, by comparison with experiment and with full quantum mechanics calculations, to allow a reasonably accurate computational study of experimentally relevant problems which otherwise would be out of reach for theoretical chemistry. [Pg.117]

In (C5Me5)Rh(C2H3SiMe3)2-catalyzed C-H/olefin coupling the effect of the coordination of the ketone carbonyl is different from that in the ruthenium-catalyzed reaction [10], In the rhodium-catalyzed reaction all C-H bonds on the aromatic ring are cleaved by the rhodium complex without coordination of the ketone carbonyl. Thus, C-H bond cleavage and addition of Rh-H to olefins proceed without coordination of the ketone carbonyl. After addition of the Rh-H species to the olefin, a coordinatively unsaturated Rh(aryl) (alkyl) species should be formed. Coordination of the ketone carbonyl group to the vacant site on the rhodium atom leads... [Pg.168]

An interesting example is the hydroiminoacylation reaction, a good alternative to hydroacylation reactions, using aldimines as a synthetic equivalent to aldehydes (Scheme 4) [4]. The rhodium-catalyzed hydroiminoacylation of an olefin with aldimines produced a ketimine which could be further acid-hydrolyzed to give the ketone. The reaction proceeded via the formation of a stable iminoacylrhodi-um(III) hydride (this will be discussed in the mechanism section), production of which is facilitated by initial coordination of the rhodium complex to the pyridine moiety of the aldimine. This hydroiminoacylation procedure opened up the direct... [Pg.304]

Rhodium-Catalyzed Asymmetric Hydrogenation of Olefins. MiniPHOS (1) can be used in rhodium-catalyzed asymmetric hydrogenation of olefinic compounds. The complexation with rhodium is carried out by treatment of 1 with [Rh(nbd)2]BF4in THF (eq 2). The hydrogenation of a-(acylamino)acrylic derivatives proceeds at room temperature and an initial H2 pressure of 1 or 6 atm in the presence of the 0.2 mol% MiniPHOS-Rh complex 2. The reactions are complete within 24—48 h to afford almost enantiomerically pure a-amino acids (eq 3). Itaconic acids, enamides, and dehydro-3-ami no acids can also be hydrogenated with excellent enantioselectivity (eq 4—6). [Pg.107]

For the intermolecular hydroacylation of olefins and acetylenes, ruthenium complexes - as well as rhodium complexes - are effective [60-64]. In 1980, Miller reported the first example of an intermolecular hydroacylation of aldehydes with olefins to give ketones, during their studies of the mechanism of the rhodium-catalyzed intramolecular cydization of 4-pentenal using ethylene-saturated chloroform as the solvent [60]. A similar example of the hydroacylation of aldehydes with olefins using ruthenium catalyst is shown in Eq. 9.43. When the reaction of propionaldehyde with ethylene was conducted in the presence of RuCl2(PPh3)3 as the catalyst without... [Pg.242]

Rhodium-olefin complexes have been identified as intermediate species in rhodium-catalyzed olefin-to-olefin addition reactions (5a, 150a, 151) and olefin hydrogenation reactions (450). Although the ethylene-Rh(I) complexes are not in themselves catalysts for dimerization of ethylene, both [(C2H4)2RhCl]2 and (C2H4)2Rh( Cac) react with... [Pg.296]

Rhodium-based catalysis suffers from the high cost of the metal and quite often from a lack of stereoselectivity. This justifies the search for alternative catalysts. In this context, ruthenium-based catalysts look rather attractive nowadays, although still poorly documented. Recently, diruthenium(II,II) tetracarboxylates [42], polymeric and dimeric diruthenium(I,I) dicarboxylates [43], ruthenacarbor-ane clusters [44], and hydride and silyl ruthenium complexes [45 a] and Ru porphyrins [45 b] have been introduced as efficient cyclopropanation catalysts, superior to the Ru(II,III) complex Ru2(OAc)4Cl investigated earlier [7]. In terms of efficiency, electrophilicity, regio- and (partly) stereoselectivity, the most efficient ruthenium-based catalysts compare rather well with the rhodium(II) carboxylates. The ruthenium systems tested so far seem to display a slightly lower level of activity but are somewhat more discriminating in competitive reactions, which apparently could be due to the formation of less electrophilic carbenoid species. This point is probably related to the observation that some ruthenium complexes competitively catalyze both olefin cyclopropanation and olefin metathesis [46], which is at variance with what is observed with the rhodium catalysts. [Pg.805]

Other rhodium complex also catalyzed the addition of the C-H bond in aldehyde to olefins [115-117]. The use of paraformaldehyde results in the formation of aldehydes [115]. Marder et al. proposed the reaction mechanism of CpRh(eth-ylene)2-catalyzed addition of C-H bond in aldehyde to ethylene by the use of isotope-labeling experiments [117]. They suggested that insertion of ethylene to the Rh-H bond must take place rapidly and reversibly, and this equilibrium must be established significantly faster than either aldehyde reductive elimination or product formation (Scheme 4). [Pg.68]

A variety of organic syntheses which involve reactions of olefins are catalyzed by rhodium compounds. As a consequence, considerable attention has been given to the study of the properties of olefin complexes of rhodium. The two ethylene complexes,1,2 the preparations of which are described here, are very useful in this respect. Moreover, since ethylene is very labile and volatile, a variety of compounds (including complexes of other olefins) are easily accessible from them by nucleophilic displacement of ethylene. Displacement of ethylene by carbon monoxide is illustrated by the synthesis of di-/z-chlorotetracarbonyldirhodium(I). [Pg.15]

In order to eliminate the possibility for in situ carbene formation Raubenheimer et al. synthesized l-alkyl-2,3-dimethylimidazolium triflate ionic liquids and applied these as solvents in the rhodium catalyzed hydroformylation of l-hejEne and 1-dodecene [178]. Both, the classical Wilkinson type complex [RhCl(TPP)3] and the chiral, stereochemically pure complex (—)-(j7 -cycloocta-l,5-diene)-(2-menthyl-4,7-dimethylindenyl)rhodium(i) were applied. The Wilkinson catalyst showed low selectivity towards n-aldehydes whereas the chiral catalyst formed branched aldehydes predominantly. Hydrogenation was significant with up to 44% alkanes being formed and also a significant activity for olefin isomerization was observed. Additionally, hydroformylation was found to be slower in the ionic liquid than in toluene. Some of the findings were attributed by the authors to the lower gas solubility in the ionic liquid and the slower diffusion of the reactive gases H2 and CO into the ionic medium. [Pg.417]

Phosphonium ionic liquids have been used several times for metal-catalyzed hydroformylations. Ruthenium and cobalt metal complexes catalyze the hydroformylation of internal olefins in [ Bu4P][Br] the major products are, however, the corresponding alcohols. Rhodium-catalyzed hydroformylations were conducted in [Bu3PEt][TsO] and [Ph3PEt][TsO] melts (meltingpoints 8UC and94 C, respectively). The products were easily isolated by decantation of the solid medium at room temperature. ... [Pg.30]


See other pages where Olefin complexes rhodium-catalyzed is mentioned: [Pg.118]    [Pg.352]    [Pg.345]    [Pg.411]    [Pg.131]    [Pg.412]    [Pg.55]    [Pg.245]    [Pg.45]    [Pg.173]    [Pg.352]    [Pg.10]    [Pg.88]    [Pg.269]    [Pg.40]    [Pg.45]    [Pg.84]    [Pg.55]    [Pg.677]    [Pg.229]    [Pg.143]    [Pg.127]    [Pg.352]    [Pg.301]    [Pg.166]    [Pg.65]    [Pg.94]    [Pg.91]    [Pg.53]    [Pg.367]    [Pg.1517]    [Pg.88]    [Pg.1561]   
See also in sourсe #XX -- [ Pg.756 , Pg.757 , Pg.758 , Pg.759 , Pg.760 , Pg.761 , Pg.762 , Pg.763 , Pg.764 , Pg.765 , Pg.766 , Pg.767 , Pg.768 ]




SEARCH



Olefin complexation

Olefin complexes

Olefin rhodium-catalyzed

Olefination catalyzed

Olefines, complexes

Olefins catalyzed

Rhodium complexes catalyzed

Rhodium, olefin complexes

Rhodium-catalyzed

© 2024 chempedia.info